# Debug Scripts for YOLO ONNX Detection This directory contains debugging tools for troubleshooting YOLO object detection issues. ## Setup 1. Create a Python virtual environment: ```bash python -m venv debug_env source debug_env/bin/activate # On Windows: debug_env\Scripts\activate ``` 2. Install dependencies: ```bash pip install -r requirements.txt ``` ## Scripts ### `debug_model_comparison.py` Compares .pt model predictions with ONNX model outputs on the same static test image. - Tests both PyTorch and ONNX models side-by-side - Provides detailed debug output including preprocessing steps - Useful for identifying model export issues ### `test_static_onnx.py` Tests ONNX model against static images to isolate Android capture issues. - Bypasses Android screen capture pipeline - Tests multiple ONNX model variants - Good for validating model functionality ### `export_model_variants.py` Exports YOLO model variants with different NMS settings. - Creates models with different confidence/IoU thresholds - Useful for debugging detection sensitivity issues ### `inspect_onnx_model.py` Inspects ONNX model structure and metadata. - Verifies class mappings and model architecture - Helpful for debugging model export problems ## Usage Place test images in `../../test_images/` and ensure model files are in `../../raw_models/`. Example: ```bash cd tools/debug_scripts source debug_env/bin/activate python debug_model_comparison.py ```