---------------------------------- --[[ Ant Colony Optimization (ACO) for Travelling Salesman Problem (TSP) for Routes (a World of Warcraft addon) Copyright (C) 2011 Xinhuan This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ]] --------------------------------- --[[ Ant Colony Optimization and the Travelling Salesman Problem The Travelling Salesman Problem (TSP) consists of finding the shortest tour between n cities visiting each once only and ending at the starting point. Let d(i,j) be the distance between cities i and j and t(i,j) the amount of pheromone on the edge that connects i and j. t(i,j) is initially set to a small value t(0), the same for all edges (i,j). The algorithm consists of a series of iterations. One iteration of the simplest ACO algorithm applied to the TSP can be summarized as follows: (1) a set of m artificial ants are initially located at randomly selected cities; (2) each ant, denoted by k, constructs a complete tour, visiting each city exactly once, always maintaining a list J(k) of cities that remain to be visited; (3) an ant located at city i hops to a city j, selected among the cities that have not yet been visited, according to probability p(k,i,j) = (t(i,j)^a * d(i,j)^-b) / sum(t(i,l)^a * d(i,l)^-b, all l in J(k)) where a and b are two positive parameters which govern the respective influences of pheromone and distance; (4) when every ant has completed a tour, pheromone trails are updated: t(i,j) = (1-p) * t(i,j) + D(t(i,j)), where p is the evaporation rate and D(t(i,j)) is the amount of reinforcement received by edge (i,j). D(t(i,j)) is proportional to the quality of the solutions in which (i,j) was used by one ant or more. More precisely, if L(k) is the length of the tour T(k) constructed by ant k, then D(t(i,j)) = sum(D(t(k,i,j)), 1 to m) with D(t(k,i,j)) = Q / L(k) if (i,j) is in T(k) and D(t(k,i,j)) = 0 otherwise, where Q is a positive parameter. This reinforcement procedure reflects the idea that pheromone density should be lower on a longer path because a longer trail is more difficult to maintain. Steps (1) to (4) are repeated either a predefined number of times or until a satisfactory solution has been found. The algorithm works by reinforcing portions of solutions that belong to good solutions and by applying a dissipation mechanism, pheromone evaporation, which ensures that the system does not converge early toward a poor solution. When a = 0, the algorithm implements a probabilistic greedy search, whereby the next city is selected solely on the basis of its distance from the current city. When b = 0, only the pheromone is used to guide the search, which would react the way the ants do it. However, the explicit use of distance as a criterion for path selection appears to improve the algorithm's performance. In all other optimization applications also, an improvement in the algorithm's performance is observed when a local measure of greed, similar to the inverse of distance for the TSP, is included into the local selection of portions of solution by the agents. Typical parameter values are: m = n, a = 1, b = 5, p = 0.5, t(0) = 1e-6. -- Inspiration for optimization from social insect behaviour -- by E. Bonabeau, M. Dorigo & G. Theraulaz -- NATURE, VOL 406, 6 JULY 2000, www.nature.com ]] -- Note: -- The functions in this file are written specifically for use with Routes -- in mind and is not a general TSP library. ---------------------------------- -- Localize some globals local ipairs, pairs, type = ipairs, pairs, type local random = random local floor, ceil = floor, ceil local coroutine = coroutine local tinsert, tremove = tinsert, tremove local debugprofilestop = debugprofilestop local inf = math.huge local pathR = {} local lastpath local Routes = LibStub("AceAddon-3.0"):GetAddon("Routes") local TSP = {} Routes.TSP = TSP -------------------------------- -- Background execution local nextYield = 0 local function yield() local t = debugprofilestop() if t > nextYield then nextYield = t + 30 coroutine.yield() elseif t < nextYield then -- Someone called debugprofilestart(), we need to reset our timer, yield anyway nextYield = t + 30 coroutine.yield() end end ----------------------------------------------------- -- Function to get the intersection point of 2 lines (x1,y1)-(x2,y2) and (sx,sy)-(ex,ey) --[[ Unused function, its inlined in SolveTSP() function TSP:GetIntersection(x1, y1, x2, y2, sx, sy, ex, ey) local dx = x2-x1 local dy = y2-y1 local numer = dx*(sy-y1) - dy*(sx-x1) local demon = dx*(sy-ey) + dy*(ex-sx) if demon == 0 or dx == 0 then return false else local u = numer / demon local t = (sx + (ex-sx)*u - x1)/dx if u >= 0 and u <= 1 and t >= 0 and t <= 1 then --return sx + (ex-sx)*u, sy + (ey-sy)*u -- coordinate of intersection return true end end end]] ----------------------------------------------------- -- Coroutine code to allow background pathing local TSPUpdateFrame = CreateFrame("Frame") TSPUpdateFrame.running = false function TSPUpdateFrame:OnUpdate(elapsed) local status, path, meta, shortestPathLength, count, timetaken = coroutine.resume(self.co) if status then if coroutine.status(self.co) == "dead" then -- Function finished, return results self:SetScript("OnUpdate", nil) self.running = false self.finishFunc(path, meta, shortestPathLength, count, timetaken) self.finishFunc = nil self.statusFunc = nil self.co = nil self.nodes = nil end else -- An error occured in the coroutine, abort and print the error self:SetScript("OnUpdate", nil) self.running = false self.co = nil self.finishFunc = nil self.statusFunc = nil self.nodes = nil Routes:Print(Routes.L["The following error occured in the background path generation coroutine, please report to Grum or Xinhuan:"]) Routes:Print(path) end end function TSP:IsTSPRunning() return TSPUpdateFrame.running, TSPUpdateFrame.nodes end -- Same arguments as TSP:SolveTSP(), without the "nonblocking" argument function TSP:SolveTSPBackground(nodes, metadata, taboos, zoneID, parameters, path) if not TSPUpdateFrame.running then TSPUpdateFrame.co = coroutine.create(TSP.SolveTSP) TSPUpdateFrame:SetScript("OnUpdate", TSPUpdateFrame.OnUpdate) TSPUpdateFrame.running = true TSPUpdateFrame.nodes = nodes local status = coroutine.resume(TSPUpdateFrame.co, TSP, nodes, metadata, taboos, zoneID, parameters, path, true) if status then -- Do nothing, path isn't complete because at least 1 yield() is called. return 1 else -- An error occured in the coroutine, abort and return the error message. TSPUpdateFrame.running = false TSPUpdateFrame:SetScript("OnUpdate", nil) TSPUpdateFrame.co = nil return 3, path end else -- There is already a TSP running return 2 end end function TSP:SetFinishFunction(func) assert(type(func) == "function", "SetFinishFunction() expected function in 1st argument, got "..type(func).." instead.") TSPUpdateFrame.finishFunc = func end function TSP:SetStatusFunction(func) assert(type(func) == "function", "SetStatusFunction() expected function in 1st argument, got "..type(func).." instead.") TSPUpdateFrame.statusFunc = func end ----------------------------------- -- TSP:SolveTSP(nodes, metadata, zoneID, parameters, path, nonblocking) -- Arguments -- nodes - The table containing a list of Routes node IDs to path -- This list should only contain nodes on the same map. This -- table should be indexed numerically from nodes[1] to nodes[n]. -- metadata - The table containing the cluster metadata, if available -- taboos - A table containing a table of taboo regions to use. -- zoneID - The map area ID of the map that the route is to be generated on. -- parameters - The table containing the ACO parameters to use. -- path - An optional input table that is used to supply the result -- table. If this is nil, the function returns a new table. -- nonblocking - A boolean to indicate whether the function should yield() regularly. -- Returns -- path - The result TSP path is a table indexed numerically from path[1] -- to path[n], a list of Routes node IDs. -- metadata - The table containing the cluster metadata, if available -- length - The length in yards of the path returned. -- iteration - Number of interations taken. -- timeTaken - Number of seconds used. -- Notes: A new nodes[] and metadata[] table is returned. The original tables -- sent in are unmodified. function TSP:SolveTSP(nodes, metadata, taboos, zoneID, parameters, path, nonblocking) -- Notes: Some of these code might look convoluted, with seemingly unnecessary use of too many locals -- and make the code look longer. But they are for speed optimization. assert(type(nodes) == "table", "SolveTSP() expected table in 1st argument, got "..type(nodes).." instead.") assert(type(taboos) == "table", "SolveTSP() expected table in 3rd argument, got "..type(taboos).." instead.") assert(type(parameters) == "table", "SolveTSP() expected table in 5th argument, got "..type(parameters).." instead.") if type(path) == "table" then wipe(path) else path = {} end if nonblocking then -- Ensure that at least 1 yield() is called in a nonblocking call coroutine.yield() end -- Check for trivial problem of 3 or less nodes local numNodes = #nodes if numNodes < 4 then -- Trivial solution for an input size of 3 or less nodes for i = 1, numNodes do path[i] = nodes[i] end -- Create a copy of the metadata[] table too, if there is one local metadata2 if metadata then metadata2 = {} for i = 1, numNodes do metadata2[i] = {} for j = 1, #metadata[i] do metadata2[i][j] = metadata[i][j] end end end return path, metadata2, TSP:PathLength(path, zoneID), 0, 0 end -- Create a copy of the nodes[] table and use this instead of the original because data could get changed local nodes2 = {} for i = 1, numNodes do nodes2[i] = nodes[i] end local nodes = nodes2 -- Create a copy of the metadata[] table too, if there is one local metadata2 if metadata then metadata2 = {} for i = 1, numNodes do metadata2[i] = {} for j = 1, #metadata[i] do metadata2[i][j] = metadata[i][j] end end end local metadata = metadata2 -- Setup ACO parameters local startTime if nonblocking then startTime = GetTime() else startTime = debugprofilestop() end local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID) local INITIAL_PHEROMONE = parameters.initial_pheromone or 0.1 -- Parameter: Initial pheromone trail value local ALPHA = parameters.alpha or 1 -- Parameter: Likelihood of ants to follow pheromone trails (larger value == more likely) local BETA = parameters.beta or 6 -- Parameter: Likelihood of ants to choose closer nodes (larger value == more likely) local LOCALDECAY = parameters.local_decay or 0.2 -- Parameter: Governs local trail decay rate [0, 1] local LOCALUPDATE = parameters.local_update or 0.4 -- Parameter: Amount of pheromone to reinforce local trail update by local GLOBALDECAY = parameters.global_decay or 0.2 -- Parameter: Governs global trail decay rate [0, 1] local TWOOPTPASSES = parameters.twoopt_passes or 3 -- Parameter: Number of times to perform 2-opt passes local TWOPOINTFIVEOPT = parameters.two_point_five_opt or false-- Parameter: Run improved 2-opt pass? local QUALITY = 2 * zoneH -- Parameter: Tunable parameter that should be somewhat close to 1/4 to 1/2 (distance) of a good solution local numAnts = ceil(2 * numNodes ^ 0.5) -- Parameter: Number of ants. local LOCALDECAYUPDATE = LOCALDECAY * LOCALUPDATE -- Just a constant. -- If ALPHA = 0, the closest cities are more likely to be selected. -- If BETA = 0, only pheromone amplifications is at work. -- The number of ants will directly determine the speed of the algorithm proportionally. More ants will get more optimal results, but don't use more ants than the number of nodes. -- You need more ants when there are more nodes to have more chances to find a good path quickly. The usual default is numAnts = numNodes, but this takes too long in WoW. local PRUNEDIST = zoneW * 0.30 -- Another constant for our own pruning local shortestPathLength = math.huge local shortestPath = {} -- Step 1 - Initialize and generate the weight matrix, the pheromone matrix and the ants local weight = {} local phero = {} local ants = {} local prune = {} local antprob = {} for i = 1, numNodes do prune[i] = {} end for i = 1, numNodes do local x1, y1 = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000 local u = i*numNodes-i weight[u] = 0 phero[u] = INITIAL_PHEROMONE for j = i+1, numNodes do local x2, y2 = floor(nodes[j] / 10000) / 10000, (nodes[j] % 10000) / 10000 local u, v = i*numNodes-j, j*numNodes-i weight[u] = (((x2 - x1)*zoneW)^2 + ((y2 - y1)*zoneH)^2)^0.5 -- Calc distance between each node pair weight[v] = weight[u] phero[u] = INITIAL_PHEROMONE -- All pheromone trails start phero[v] = INITIAL_PHEROMONE -- with a initial small value -- Table containing data for 2-opt pruning operations. This is just a list of nodes that are near each node. if weight[u] < PRUNEDIST then tinsert(prune[i], j) tinsert(prune[j], i) end -- For taboo regions local flag = false for m = 1, #taboos do -- loop over every taboo local taboo_data = taboos[m].route local last_point = taboo_data[ #taboo_data ] local sx, sy = floor(last_point / 10000) / 10000, (last_point % 10000) / 10000 for n = 1, #taboo_data do local point = taboo_data[n] local ex, ey = floor(point / 10000) / 10000, (point % 10000) / 10000 -- inlined the intersection check so that it is faster local dx = x2-x1 local dy = y2-y1 local numer = dx*(sy-y1) - dy*(sx-x1) local demon = dx*(sy-ey) + dy*(ex-sx) if demon ~= 0 and dx ~= 0 then local u = numer / demon local t = (sx + (ex-sx)*u - x1)/dx if u >= 0 and u <= 1 and t >= 0 and t <= 1 then flag = true break end end sx, sy = ex, ey last_point = point end if flag then break end end if flag then -- we increase/bias the weight by a constant factor and by the zone width, since it passes thru a taboo region weight[u] = weight[u] * 2 + zoneW weight[v] = weight[u] end -- Initialize the probability table of travelling from city i to j antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA antprob[v] = antprob[u] end end for k = 1, numAnts do ants[k] = {} local antpath = ants[k] -- This table will stores both the partially constructed path (from 1 to j) and the remainder unvisited nodes (from j+1 to N) for j = 1, numNodes do antpath[j] = j end end -- Step 2 - Loop until path has small to no changes over the last MAXUNCHANGEDINTERATION iterations local nochanges = 0 local count = 0 local MAXUNCHANGEDINTERATION = 3 if numAnts >= 25 then MAXUNCHANGEDINTERATION = 2 end while nochanges < MAXUNCHANGEDINTERATION do nochanges = nochanges + 1 count = count + 1 -- Step 3 - Each ant k starts at a randomly selected node for k = 1, numAnts do local antpath = ants[k] local p = random(numNodes) antpath[1], antpath[p] = antpath[p], antpath[1] end -- Step 4 - Construct/path the next N-1 nodes... for j = 1, numNodes-1 do -- Step 5 - ...for each ant k for k = 1, numAnts do -- Step 6 - Calculate the probability of visiting each remainder node, and the total probability local antpath = ants[k] local curnode = antpath[j] -- j is the "current node" index in the path local totalprob = 0 for i = j+1, numNodes do local u = curnode*numNodes-antpath[i] totalprob = totalprob + antprob[u] end -- Step 7 - Now randomly choose one of these nodes to go to based on the calculated probabilities local p = totalprob * random() totalprob = 0 for i = j+1, numNodes do local u = curnode*numNodes-antpath[i] totalprob = totalprob + antprob[u] if p <= totalprob then antpath[j+1], antpath[i] = antpath[i], antpath[j+1] phero[u] = (1 - LOCALDECAY) * phero[u] + LOCALDECAYUPDATE -- Perform local pheromone update antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA -- Update the probability break end end end if nonblocking then yield() end end for k = 1, numAnts do -- Send out status update if requested (this loop is the one that actually takes lots of time) if nonblocking and TSPUpdateFrame.statusFunc then TSPUpdateFrame.statusFunc(count, (k-1)/numAnts) end -- Step 8 -- Perform local pheromone update on the path from the last node to the first node for each ant k local antpath = ants[k] local curnode = antpath[numNodes] local nextnode = antpath[1] local u = curnode*numNodes-nextnode phero[u] = (1 - LOCALDECAY) * phero[u] + LOCALDECAYUPDATE antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA -- Step 9 -- Perform 2-opt on the path to improve it --[[for i = 1, TWOOPTPASSES do if nonblocking then yield() end if TSP:TwoOpt(antpath, weight, prune) == 0 then break end end]] while TSP:TwoOpt(antpath, weight, prune, TWOPOINTFIVEOPT, nonblocking) > 0 do -- Cycle the last 3 nodes so that the 2-opt algorithm will work on the last -- 3 nodes in the path that got missed (the loop goes from 1 to N-3) tinsert(antpath, tremove(antpath, 1)) tinsert(antpath, tremove(antpath, 1)) tinsert(antpath, tremove(antpath, 1)) if nonblocking then yield() end end -- Step 10 -- At the same time, we also calculate the length of each ant's tour local pathLength = 0 curnode = antpath[numNodes] for i = 1, numNodes do nextnode = antpath[i] pathLength = pathLength + weight[curnode*numNodes-nextnode] curnode = nextnode end -- Step 11 -- If this ant's path is shorter than the global shortest known solution, copy it if pathLength < shortestPathLength then shortestPathLength = pathLength for i = 1, numNodes do shortestPath[i] = antpath[i] end nochanges = 0 -- There were changes, so reset nochanges counter to 0 end end -- Step 12 - Perform global pheromone trail update on the best known solution local curnode = shortestPath[numNodes] local tempConstant = GLOBALDECAY * QUALITY / shortestPathLength for i = 1, numNodes do local nextnode = shortestPath[i] local u = curnode*numNodes-nextnode phero[u] = (1 - GLOBALDECAY) * phero[u] + tempConstant antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA -- Update the probability curnode = nextnode end -- report how long path this round found (with progress==1) if nonblocking and TSPUpdateFrame.statusFunc then TSPUpdateFrame.statusFunc(count, 1, shortestPathLength) yield() end end do -- Perform a non-pruned 2-opt on the final path so that there is absolutely no criss-cross local noprune = {} for i = 1, numNodes do noprune[i] = {} end for i = 1, numNodes do for j = i+1, numNodes do tinsert(noprune[i], j) tinsert(noprune[j], i) end end while TSP:TwoOpt(shortestPath, weight, noprune, TWOPOINTFIVEOPT, nonblocking) > 0 do tinsert(shortestPath, tremove(shortestPath, 1)) tinsert(shortestPath, tremove(shortestPath, 1)) tinsert(shortestPath, tremove(shortestPath, 1)) if nonblocking then yield() end end -- Recompute the path length shortestPathLength = 0 local curnode = shortestPath[numNodes] for i = 1, numNodes do local nextnode = shortestPath[i] shortestPathLength = shortestPathLength + weight[curnode*numNodes-nextnode] curnode = nextnode end end -- Step 13 -- Check the length of the original tour that was sent in in nodes[] local pathLength = 0 for i = 2, numNodes do pathLength = pathLength + weight[(i-1)*numNodes-i] end pathLength = pathLength + weight[numNodes*numNodes-1] -- Step 14 -- Check solution with original that was sent in if pathLength < shortestPathLength then -- TSP didn't find a shorter solution, so copy the input to the output for i = 1, numNodes do path[i] = nodes[i] end shortestPathLength = pathLength else -- TSP found a shorter path than the original, convert our shortest path to the output format wanted local meta if metadata then meta = {} end for i = 1, numNodes do path[i] = nodes[shortestPath[i]] if metadata then meta[i] = metadata[shortestPath[i]] end end metadata = meta -- prev metadata[] not recycled here, will go out of scope at function end and get GCed end lastpath = nil -- This step is necessary because our pathlength above is calculated from biased data from taboos shortestPathLength = TSP:PathLength(path, zoneID) if nonblocking then startTime = GetTime() - startTime else startTime = debugprofilestop() - startTime startTime = startTime / 1000 end return path, metadata, shortestPathLength, count, startTime end -- TSP:TwoOpt(path, weight) -- Arguments -- path - The table containing a TSP path to improve. Input must have node IDs 1-N, numerically indexed. -- weight - The table containing the NxN weight matrix. -- prune - The table containing the list of neighbouring nodes for each node. -- twoPointFiveOpt - A boolean indicating whether to perform 2.5-opt. -- nonblocking - A boolean indicating whether the function should yield() regularly. -- Returns -- count - The number of 2-opt replacements made to path[] --[[ Typically TSP tour refinement takes place by "flipping" edges. For example, if the tour contains the edges (v1, w1) and (w2, v2) in that order, then these two edges can always be flipped to create (v1, w2) and (w1, v2). This sort of step forms the basis of the 2-opt algorithm which is a steepest descent approach, repeatedly flipping pairs of edges if they improve the tour quality until it reaches a local minimum of the objective function and no more such flips exist. In a similar vein, the 3-opt algorithm exchanges 3 edges at a time. These are more specific versions of the Lin-Kernighan (LK) algorithm or better known as the N-opt or variable-opt algorithm. -- A Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travelling Salesman Problem -- Chris Walshaw, September 27, 2001. ]] function TSP:TwoOpt(path, weight, prune, twoPointFiveOpt, nonblocking) local count = 0 local numNodes = #path local pathR = pathR -- Generate reverse lookup table if lastpath ~= path then for i = 1, numNodes do pathR[path[i]] = i end end -- Perform normal 2-opt for i = 1, numNodes-3 do local a, b = path[i], path[i+1] local z = weight[a*numNodes-b] --for j = i+2, numNodes-1 do for m = 1, #prune[a] do local j = pathR[prune[a][m]] if j > i+1 and j ~= numNodes then local c, d = path[j], path[j+1] local currW = z + weight[c*numNodes-d] local newW = weight[a*numNodes-c] + weight[b*numNodes-d] if newW < currW then -- Swap these 2 edges to get a shorter path -- This is done by reversing the node order between i+1 to j local left = i+1 local right = j while left < right do local L, R = path[right], path[left] path[left], path[right] = L, R pathR[L], pathR[R] = left, right left = left + 1 right = right - 1 end b = path[i+1] z = weight[a*numNodes-b] count = count + 1 end end end end -- Then perform 2.5-opt if twoPointFiveOpt then if nonblocking then yield() end for i = 1, numNodes-4 do local a, b, c = path[i], path[i+1], path[i+2] local z = weight[a*numNodes-b] + weight[b*numNodes-c] for m = 1, #prune[a] do local j = pathR[prune[a][m]] if j > i+2 and j ~= numNodes then local d, e = path[j], path[j+1] local currW = z + weight[d*numNodes-e] local newW = weight[a*numNodes-c] + weight[d*numNodes-b] + weight[b*numNodes-e] if newW < currW then -- Remove node b from the path, then reinsert it between d and e for q = i+1, j-1 do path[q] = path[q+1] pathR[path[q]] = q end path[j] = b pathR[b] = j b, c = path[i+1], path[i+2] z = weight[a*numNodes-b] + weight[b*numNodes-c] count = count + 1 end end end end end lastpath = path return count end -- Helper function for TSP:InsertNode() -- Tries to insert node into an existing cluster -- Returns true if successful, false otherwise local function tryInsert(nodes, metadata, insertPoint, nodeID, radius, zoneW, zoneH) local x, y = floor(nodeID / 10000) / 10000, (nodeID % 10000) / 10000 local x2, y2 = floor(nodes[insertPoint] / 10000) / 10000, (nodes[insertPoint] % 10000) / 10000 -- Calculate the new centroid and coord local num = #metadata[insertPoint] x2, y2 = (x2*num+x)/(num+1), (y2*num+y)/(num+1) local coord = floor(x2 * 10000 + 0.5) * 10000 + floor(y2 * 10000 + 0.5) x2, y2 = floor(coord / 10000) / 10000, (coord % 10000) / 10000 -- to round off the coordinate -- Check that the merged point is valid for i = 1, num do local coord = metadata[insertPoint][i] local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 local t = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 if t > radius then return false end end tinsert(metadata[insertPoint], nodeID) nodes[insertPoint] = coord return true end -- TSP:InsertNode(nodes, zoneID, nodeID, twoOpt, path) -- Inserts a node into an existing route. -- Arguments -- nodes - The table containing a list of Routes node IDs to path -- This list should only contain nodes on the same map. This -- table should be indexed numerically from nodes[1] to nodes[n]. -- metadata - The table containing the cluster metadata, if available -- zoneID - The map area ID of the map that the route is on. -- nodeID - The Routes node ID to insert into the route. -- Returns -- pathLength - The length of the route in yards. -- Notes: This function modifies the original nodes[] and metadata[] tables -- directly function TSP:InsertNode(nodes, metadata, zoneID, nodeID, radius) assert(type(nodes) == "table", "InsertNode() expected table in 1st argument, got "..type(nodes).." instead.") -- Check for trivial problem of 2 or less nodes local numNodes = #nodes if numNodes < 3 then -- Trivial solution for an input size of 2 or less nodes nodes[numNodes+1] = nodeID if metadata then metadata[numNodes+1] = {nodeID} end return TSP:PathLength(nodes, zoneID) end -- Insert the node to be added at the end of the list. tinsert(nodes, nodeID) numNodes = #nodes -- Step 1 - Initialize and generate the weight matrix, and prune matrix if doing 2-opt local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID) local weight = {} -- Not doing a twoopt means we only need to generate O(2n) entries in the weight table local x, y, x2, y2 for i = 1, numNodes-2 do -- for every node i, calculate its distance to node i+1 x, y = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000 x2, y2 = floor(nodes[i+1] / 10000) / 10000, (nodes[i+1] % 10000) / 10000 weight[i*numNodes-(i+1)] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance end -- do looparound node x, y = floor(nodes[numNodes-1] / 10000) / 10000, (nodes[numNodes-1] % 10000) / 10000 x2, y2 = floor(nodes[1] / 10000) / 10000, (nodes[1] % 10000) / 10000 weight[(numNodes-1)*numNodes-1] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance -- calc distance for every node to the node to be inserted x2, y2 = floor(nodes[numNodes] / 10000) / 10000, (nodes[numNodes] % 10000) / 10000 for i = 1, numNodes-1 do x, y = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000 local u, v = i*numNodes-numNodes, numNodes*numNodes-i weight[u] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance weight[v] = weight[u] end -- Step 2 - Find the best place to insert the node local shortestPathLength = math.huge -- Some large value local insertPoint for i = 1, numNodes-2 do local z = weight[i*numNodes-numNodes] + weight[numNodes*numNodes-(i+1)] - weight[i*numNodes-(i+1)] if z < shortestPathLength then shortestPathLength = z insertPoint = i + 1 end end if weight[(numNodes-1)*numNodes-numNodes] + weight[numNodes*numNodes-1] - weight[(numNodes-1)*numNodes-1] < shortestPathLength then -- Do nothing, inserting the node at the last place is the best, already inserted here. if metadata then tremove(nodes) local try1, try2 = numNodes-1, 1 if weight[(numNodes-1)*numNodes-numNodes] > weight[numNodes*numNodes-1] then try1, try2 = try2, try1 -- try the closer node first end local flag = tryInsert(nodes, metadata, try1, nodeID, radius, zoneW, zoneH) if not flag then flag = tryInsert(nodes, metadata, try2, nodeID, radius, zoneW, zoneH) end if not flag then -- both clusters failed, so insert a new cluster tinsert(nodes, nodeID) tinsert(metadata, {nodeID}) end end else -- Remove it from the last place in the path and insert it at the best place found. tremove(nodes) if metadata then local try1, try2 = insertPoint-1, insertPoint if weight[(insertPoint-1)*numNodes-numNodes] > weight[numNodes*numNodes-insertPoint] then try1, try2 = try2, try1 end local flag = tryInsert(nodes, metadata, try1, nodeID, radius, zoneW, zoneH) if not flag then flag = tryInsert(nodes, metadata, try2, nodeID, radius, zoneW, zoneH) end if not flag then tinsert(nodes, insertPoint, nodeID) tinsert(metadata, insertPoint, {nodeID}) end else tinsert(nodes, insertPoint, nodeID) end end return TSP:PathLength(nodes, zoneID) end -- TSP:PathLength(nodes, zoneID) -- Returns how long a given route is in yards. -- Arguments -- nodes - The table containing a list of Routes node IDs to path -- This list should only contain nodes on the same map. This -- table should be indexed numerically from nodes[1] to nodes[n]. -- zoneID - The map area ID of the map that the route is on. -- Returns -- pathLength - The length of the route in yards. function TSP:PathLength(nodes, zoneID) assert(type(nodes) == "table", "PathLength() expected table in 1st argument, got "..type(nodes).." instead.") local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID) local numNodes = #nodes local pathLength = 0 -- Check for trivial problem of 1 or less nodes if numNodes <= 1 then return 0 end -- Get coordinate of last node local x2, y2 = floor(nodes[numNodes] / 10000) / 10000, (nodes[numNodes] % 10000) / 10000 for i = 1, #nodes do local x, y = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000 pathLength = pathLength + (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 x2, y2 = x, y end return pathLength end -- TSP:ClusterRoute(nodes, zoneID, radius) -- Arguments -- nodes - The table containing a list of Routes node IDs to path -- This list should only contain nodes on the same map. This -- table should be indexed numerically from nodes[1] to nodes[n]. -- zoneID - The map area ID the route is in -- radius - The radius in yards to cluster -- Returns -- path - The result TSP path is a table indexed numerically from path[1] -- to path[n], a list of Routes node IDs. n is usually smaller than -- the original input -- metadata - The metadata table for path[] containing the original nodes -- clustered -- length - The length of the new route in yards -- Notes: The original table sent in is unmodified. New tables are returned. --[[ Hierarchical Agglomerative Clustering Data clustering algorithms can be hierarchical or partitional. Hierarchical algorithms find successive clusters using previously established clusters, whereas partitional algorithms determine all clusters at once. Hierarchical algorithms can be agglomerative ("bottom-up") or divisive ("top-down"). Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters. Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters. This method (Agglomerative) builds the hierarchy from the individual elements by progressively merging clusters. The first step is to determine which elements to merge in a cluster. Usually, we want to take the two closest elements, according to the chosen distance. Optionally, one can also construct a distance matrix at this stage, where the number in the i-th row j-th column is the distance between the i-th and j-th elements. Then, as clustering progresses, rows and columns are merged as the clusters are merged and the distances updated. This is a common way to implement this type of clustering, and has the benefit of catching distances between clusters. -- From Wikipedia, Cluster analysis -- http://en.wikipedia.org/wiki/Cluster_analysis -- 25 January 2008 ]] function TSP:ClusterRoute(nodes, zoneID, radius) local weight = {} -- weight matrix local metadata = {} -- metadata after clustering local numNodes = #nodes local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID) local diameter = radius * 2 --local taboo = 0 -- Create a copy of the nodes[] table and use this instead of the original because we want to modify this table local nodes2 = {} for i = 1, numNodes do nodes2[i] = nodes[i] weight[i] = {} -- make weight[] a 2-dimensional table end local nodes = nodes2 -- Step 1: Generate the weight table for i = 1, numNodes do local coord = nodes[i] local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 local w = weight[i] w[i] = 0 for j = i+1, numNodes do local coord = nodes[j] local x2, y2 = floor(coord / 10000) / 10000, (coord % 10000) / 10000 w[j] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance between each node pair weight[j][i] = true -- dummy value just to fill the lower half of the table so that tremove() will work on it end end -- Step 2: Generate the initial metadata tables for i = 1, numNodes do metadata[i] = {} metadata[i][1] = nodes[i] end -- Step 5: ...and loop until there is no such pair of nodes while true do -- Step 3: Find the closest pair of nodes within the merge radius local smallestDist = inf local node1, node2 for i = 1, numNodes-1 do local w = weight[i] for j = i+1, numNodes do local w2 = w[j] if w2 <= diameter and w2 < smallestDist then smallestDist = w2 node1 = i node2 = j end end end -- Step 4: Merge node2 into node1... if node1 then local m1, m2 = metadata[node1], metadata[node2] local node1num, node2num = #m1, #m2 local totalnum = node1num + node2num -- Calculate the new centroid of node1 local n1, n2 = nodes[node1], nodes[node2] local node1x = ( floor(n1 / 10000) / 10000 * node1num + floor(n2 / 10000) / 10000 * node2num ) / totalnum local node1y = ( (n1 % 10000) / 10000 * node1num + (n2 % 10000) / 10000 * node2num ) / totalnum -- Calculate the new coord from the new (x,y) local coord = floor(node1x * 10000 + 0.5) * 10000 + floor(node1y * 10000 + 0.5) node1x, node1y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 -- to round off the coordinate -- Check that the merged point is valid for i = 1, node1num do local coord = m1[i] local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 local t = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5 if t > radius then -- Merging this node will cause the merged point to be too far away -- from an original point, so taboo it by making the weight infinity -- And store a backup in the lower half of the table weight[node2][node1] = weight[node1][node2] weight[node1][node2] = inf --taboo = taboo + 1 break end end if weight[node1][node2] ~= inf then for i = 1, node2num do local coord = m2[i] local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 local t = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5 if t > radius then weight[node2][node1] = weight[node1][node2] weight[node1][node2] = inf --taboo = taboo + 1 break end end end if weight[node1][node2] ~= inf then -- Merge the metadata of node2 into node1 for i = 1, node2num do tinsert(m1, m2[i]) end -- Set the new coord of node1 nodes[node1] = coord -- Delete node2 from metadata[] tremove(metadata, node2) -- Delete node2 from nodes[] tremove(nodes, node2) -- Remove node2 from the weight table for i = 1, numNodes do tremove(weight[i], node2) -- remove column end tremove(weight, node2) -- remove row -- Update number of nodes numNodes = numNodes - 1 -- Update the weight table for all nodes relating to node1, this can untaboo nodes for i = 1, node1-1 do local coord = nodes[i] local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 weight[i][node1] = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5 end for i = node1+1, numNodes do local coord = nodes[i] local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 weight[node1][i] = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5 end end else break -- loop termination end end -- Get the new pathLength local pathLength = weight[1][numNodes] pathLength = pathLength == inf and weight[numNodes][1] or pathLength for i = 1, numNodes-1 do local w = weight[i][i+1] pathLength = pathLength + (w == inf and weight[i+1][i] or w) -- use the backup in the lower half of the triangle if it was tabooed end --ChatFrame1:AddMessage(taboo.." tabooed") return nodes, metadata, pathLength end -- TSP:DecrossRoute(nodes) -- Arguments -- nodes - The table containing a list of Routes node IDs to path -- This list should only contain nodes on the same map. This -- table should be indexed numerically from nodes[1] to nodes[n]. -- Returns nothing -- Notes: The original table sent in is modified directly -- -- This function is contributed by Polarina for quickly solving a TSP in -- O(n log n). The method merely calculates a centroid, and compares the angle -- of every node with the centroid and sorts it that way, resulting in a tour -- that doesn't cross itself, but obviously not ideal. Used for initial route -- creation to get an initial quality value. function TSP:DecrossRoute(nodes) local numNodes = #nodes local math_atan2 = math.atan2 -- Find the nodes centroid local x, y = 0, 0 for index, value in ipairs(nodes) do x = x + floor(value / 1e4) y = y + value % 1e4 end x = x / numNodes y = y / numNodes -- From the middle, link all nodes in a circle table.sort(nodes, function(a, b) local aX = floor(a / 1e4) local aY = a % 1e4 local bX = floor(b / 1e4) local bY = b % 1e4 return math_atan2(aY - y, aX - x) < math_atan2(bY - y, bX - x) end) --[[ local weight = {} local path = {} local prune = {} for i = 1, numNodes do prune[i] = {} end for i = 1, numNodes do local x1, y1 = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000 local u = i*numNodes-i weight[u] = 0 for j = i+1, numNodes do local x2, y2 = floor(nodes[j] / 10000) / 10000, (nodes[j] % 10000) / 10000 local u, v = i*numNodes-j, j*numNodes-i weight[u] = ((x2 - x1)^2 + (y2 - y1)^2)^0.5 -- Calc distance between each node pair weight[v] = weight[u] --if weight[u] < 0.4 then tinsert(prune[i], j) tinsert(prune[j], i) --end end path[i] = i end while TSP:TwoOpt(path, weight, prune, false, false) > 0 do end local newpath = {} for i = 1, numNodes do newpath[i] = nodes[ path[i] ] end return newpath]] return nodes end -- vim: ts=4 noexpandtab