--[[ Copyright (c) 2020 Ross Nichols Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Credits: The following projects served as inspiration for aspects of this project: 1. LibDeflate, by Haoqian He. https://github.com/SafeteeWoW/LibDeflate For the CreateReader/CreateWriter functions. 2. lua-MessagePack, by François Perrad. https://framagit.org/fperrad/lua-MessagePack For the mechanism for packing/unpacking floats and ints. 3. LibQuestieSerializer, by aero. https://github.com/AeroScripts/LibQuestieSerializer For the basis of the implementation, and initial inspiration. ]] -- Latest version can be found at https://github.com/rossnichols/LibSerialize. --[[ BEGIN_README # LibSerialize LibSerialize is a Lua library for efficiently serializing/deserializing arbitrary values. It supports serializing nils, numbers, booleans, strings, and tables containing these types. It is best paired with [LibDeflate](https://github.com/safeteeWow/LibDeflate), to compress the serialized output and optionally encode it for World of Warcraft addon or chat channels. IMPORTANT: if you decide not to compress the output and plan on transmitting over an addon channel, it still needs to be encoded, but encoding via `LibDeflate:EncodeForWoWAddonChannel()` or `LibCompress:GetAddonEncodeTable()` will likely inflate the size of the serialization by a considerable amount. See the usage below for an alternative. Note that serialization and compression are sensitive to the specifics of your data set. You should experiment with the available libraries (LibSerialize, AceSerializer, LibDeflate, LibCompress, etc.) to determine which combination works best for you. ## Usage ```lua -- Dependencies: AceAddon-3.0, AceComm-3.0, LibSerialize, LibDeflate MyAddon = LibStub("AceAddon-3.0"):NewAddon("MyAddon", "AceComm-3.0") local LibSerialize = LibStub("LibSerialize") local LibDeflate = LibStub("LibDeflate") function MyAddon:OnEnable() self:RegisterComm("MyPrefix") end -- With compression (recommended): function MyAddon:Transmit(data) local serialized = LibSerialize:Serialize(data) local compressed = LibDeflate:CompressDeflate(serialized) local encoded = LibDeflate:EncodeForWoWAddonChannel(compressed) self:SendCommMessage("MyPrefix", encoded, "WHISPER", UnitName("player")) end function MyAddon:OnCommReceived(prefix, payload, distribution, sender) local decoded = LibDeflate:DecodeForWoWAddonChannel(payload) if not decoded then return end local decompressed = LibDeflate:DecompressDeflate(decoded) if not decompressed then return end local success, data = LibSerialize:Deserialize(decompressed) if not success then return end -- Handle `data` end -- Without compression (custom codec): MyAddon._codec = LibDeflate:CreateCodec("\000", "\255", "") function MyAddon:Transmit(data) local serialized = LibSerialize:Serialize(data) local encoded = self._codec:Encode(serialized) self:SendCommMessage("MyPrefix", encoded, "WHISPER", UnitName("player")) end function MyAddon:OnCommReceived(prefix, payload, distribution, sender) local decoded = self._codec:Decode(payload) if not decoded then return end local success, data = LibSerialize:Deserialize(decoded) if not success then return end -- Handle `data` end -- Async Mode - Used in WoW to prevent locking the game while processing. -- Serialize data: local processing = CreateFrame("Frame") local handler = LibSerialize:SerializeAsync(data_to_serialize) processing:SetScript("OnUpdate", function() local completed, serialized = handler() if completed then processing:SetScript("OnUpdate", nil) -- Do something with `serialized` end end) -- Deserialize data: local handler = LibSerialize:DeserializeAsync(serialized) processing:SetScript("OnUpdate", function() local completed, success, deserialized = handler() if completed then processing:SetScript("OnUpdate", nil) -- Do something with `deserialized` end end) ``` ## API * **`LibSerialize:SerializeEx(opts, ...)`** Arguments: * `opts`: options (see [Serialization Options]) * `...`: a variable number of serializable values Returns: * result: `...` serialized as a string * **`LibSerialize:Serialize(...)`** Arguments: * `...`: a variable number of serializable values Returns: * `result`: `...` serialized as a string Calls `SerializeEx(opts, ...)` with the default options (see [Serialization Options]) * **`LibSerialize:Deserialize(input)`** Arguments: * `input`: a string previously returned from a LibSerialize serialization API, or an object that implements the [Reader protocol] Returns: * `success`: a boolean indicating if deserialization was successful * `...`: the deserialized value(s) if successful, or a string containing the encountered Lua error * **`LibSerialize:DeserializeValue(input, opts)`** Arguments: * `input`: a string previously returned from a LibSerialize serialization API, or an object that implements the [Reader protocol] * `opts`: options (see [Deserialization Options]) Returns: * `...`: the deserialized value(s) * **`LibSerialize:IsSerializableType(...)`** Arguments: * `...`: a variable number of values Returns: * `result`: true if all of the values' types are serializable. Note that if you pass a table, it will be considered serializable even if it contains unserializable keys or values. Only the types of the arguments are checked. `Serialize()` will raise a Lua error if the input cannot be serialized. This will occur if any of the following exceed 16777215: any string length, any table key count, number of unique strings, number of unique tables. It will also occur by default if any unserializable types are encountered, though that behavior may be disabled (see [Serialization Options]). `Deserialize()` and `DeserializeValue()` are equivalent, except the latter returns the deserialization result directly and will not catch any Lua errors that may occur when deserializing invalid input. As of recent releases, the library supports reentrancy and concurrent usage from multiple threads (coroutines) through the public API. Modifying tables during the serialization process is unspecified and should be avoided. Table serialization is multi-phased and assumes a consistent state for the key/value pairs across the phases. It is permitted for any user-supplied functions to suspend the current thread during the serialization or deserialization process. It is however not possible to yield the current thread if the `Deserialize()` API is used, as this function inserts a C call boundary onto the call stack. This issue does not affect the `DeserializeValue()` function. ## Asynchronous API * **`LibSerialize:SerializeAsyncEx(opts, ...)`** Arguments: * `opts`: options (optional, see [Serialization Options]) * `...`: a variable number of serializable values Returns: * `handler`: function that performs the serialization. This should be called with no arguments until the first returned value is false. `handler` returns: * `completed`: a boolean indicating whether serialization is finished * `result`: once complete, `...` serialized as a string Calls `SerializeEx(opts, ...)` with the specified options, as well as setting the `async` option to true (see [Serialization Options]). Note that the passed-in table is written to when doing so. * **`LibSerialize:SerializeAsync(...)`** Arguments: * `...`: a variable number of serializable values Returns: * `handler`: function that performs the serialization. This should be called with no arguments until the first returned value is false. `handler` returns: * `completed`: a boolean indicating whether serialization is finished * `result`: once complete, `...` serialized as a string Calls `SerializeEx(opts, ...)` with the default options, as well as setting the `async` option to true (see [Serialization Options]). Note that the passed-in table is written to when doing so. * **`LibSerialize:DeserializeAsync(input, opts)`** Arguments: * `input`: a string previously returned from a LibSerialize serialization API * `opts`: options (optional, see [Deserialization Options]) Returns: * `handler`: function that performs the deserialization. This should be called with no arguments until the first returned value is false. `handler` returns: * `completed`: a boolean indicating whether deserialization is finished * `success`: once complete, a boolean indicating if deserialization was successful * `...`: once complete, the deserialized value(s) if successful, or a string containing the encountered Lua error Calls `DeserializeValue(opts, ...)` with the specified options, as well as setting the `async` option to true (see [Deserialization Options]). Note that the passed-in table is written to when doing so. Errors encountered when serializing behave the same way as the synchronous APIs. Errors encountered when deserializing will always be caught and returned via the handler's return values, even if `DeserializeValue()` is called directly. This is different than when calling `DeserializeValue()` in synchronous mode. ## Serialization Options The following serialization options are supported: * `errorOnUnserializableType`: `boolean` (default true) * `true`: unserializable types will raise a Lua error * `false`: unserializable types will be ignored. If it's a table key or value, the key/value pair will be skipped. If it's one of the arguments to the call to SerializeEx(), it will be replaced with `nil`. * `stable`: `boolean` (default false) * `true`: the resulting string will be stable, even if the input includes maps. This option comes with an extra memory usage and CPU time cost. * `false`: the resulting string will be unstable and will potentially differ between invocations if the input includes maps * `filter`: `function(t, k, v) => boolean` (default nil) * If specified, the function will be called on every key/value pair in every table encountered during serialization. The function must return true for the pair to be serialized. It may be called multiple times on a table for the same key/value pair. See notes on reeentrancy and table modification. * `async`: `boolean` (default false) * `true`: the API returns a coroutine that performs the serialization * `false`: the API performs the serialization directly * `yieldCheck`: `function(t) => boolean` (default impl yields after 4096 items) * Only applicable when serializing asynchronously. If specified, the function will be called every time an item is about to be serialized. If the function returns true, the coroutine will yield. The function is passed a "scratch" table into which it can persist state. * `writer`: `any` (default nil) * If specified, the object referenced by this field will be checked to see if it implements the [Writer protocol]. If so, the functions it defines will be used to control how serialized data is written. ## Deserialization Options The following deserialization options are supported: * `async`: `boolean` (default false) * `true`: the API returns a coroutine that performs the deserialization * `false`: the API performs the deserialization directly * `yieldCheck`: `function(t) => boolean` (default impl yields after 4096 items) * Only applicable when deserializing asynchronously. If specified, the function will be called every time an item is about to be deserialized. If the function returns true, the coroutine will yield. The function is passed a "scratch" table into which it can persist state. If an option is unspecified in the table, then its default will be used. This means that if an option `foo` defaults to true, then: * `myOpts.foo = false`: option `foo` is false * `myOpts.foo = nil`: option `foo` is true ## Reader Protocol The library supports customizing how serialized data is provided to the deserialization functions through the use of the "Reader" protocol. This enables advanced use cases such as batched or throttled deserialization via coroutines, or processing serialized data of an unknown-length in a streamed manner. Any value supplied as the `input` to any deserialization function will be inspected and indexed to search for the following keys. If provided, these will override default behaviors otherwise implemented by the library. * `ReadBytes`: `function(input, i, j) => string` (optional) * If specified, this function will be called every time the library needs to read a sequence of bytes as a string from the supplied input. The range of bytes is passed in the `i` and `j` parameters, with similar semantics to standard Lua functions such as `string.sub` and `table.concat`. This function must return a string whose length is equal to the requested range of bytes. It is permitted for this function to error if the range of bytes would exceed the available bytes; if an error is raised it will pass through the library back to the caller of Deserialize/DeserializeValue. If not supplied, the default implementation will access the contents of `input` as if it were a string and call `string.sub(input, i, j)`. * `AtEnd`: `function(input, i) => boolean` (optional) * If specified, this function will be called whenever the library needs to test if the end of the input has been reached. The `i` parameter will be supplied a byte offset from the start of the input, and should typically return `true` if `i` is greater than the length of `input`. If this function returns true, the stream is considered ended and further values will not be deserialized. If this function returns false, deserialization of further values will continue until it returns true. If not supplied, the default implementation will compare the offset `i` against the length of `input` as obtained through the `#` operator. ## Writer Protocol The library supports customizing how byte strings are written during the serialization process through the use of an object that implements the "Writer" protocol. This enables advanced use cases such as batched or throttled serialization via coroutines, or streaming the data to a target instead of processing it all in one giant chunk. Any value stored on the `writer` key of the options table passed to the `SerializeEx()` function will be inspected and indexed to search for the following keys. If the required keys are all found, all operations provided by the writer will override the default behaviors otherwise implemented by the library. Otherwise, the writer is ignored and not used for any operations. * `WriteString`: `function(writer, str)` (required) * This function will be called each time the library submits a byte string that was created as result of serializing data. If this function is not supplied, the supplied `writer` is considered incomplete and will be ignored for all operations. * `Flush`: `function(writer)` (optional) * If specified, this function will be called at the end of the serialization process. It may return any number of values - including zero - all of which will be passed through to the caller of `SerializeEx()` verbatim. The default behavior if this function is not specified - and if the writer is otherwise valid - is a no-op that returns no values. ## Customizing table serialization For any serialized table, LibSerialize will check for the presence of a metatable key `__LibSerialize`. It will be interpreted as a table with the following possible keys: * `filter`: `function(t, k, v) => boolean` * If specified, the function will be called on every key/value pair in that table. The function must return true for the pair to be serialized. It may be called multiple times on a table for the same key/value pair. See notes on reeentrancy and table modification. If combined with the `filter` option, both functions must return true. ## Examples 1. `LibSerialize:Serialize()` supports variadic arguments and arbitrary key types, maintaining a consistent internal table identity. ```lua local t = { "test", [false] = {} } t[ t[false] ] = "hello" local serialized = LibSerialize:Serialize(t, "extra") local success, tab, str = LibSerialize:Deserialize(serialized) assert(success) assert(tab[1] == "test") assert(tab[ tab[false] ] == "hello") assert(str == "extra") ``` 2. Normally, unserializable types raise an error when encountered during serialization, but that behavior can be disabled in order to silently ignore them instead. ```lua local serialized = LibSerialize:SerializeEx( { errorOnUnserializableType = false }, print, { a = 1, b = print }) local success, fn, tab = LibSerialize:Deserialize(serialized) assert(success) assert(fn == nil) assert(tab.a == 1) assert(tab.b == nil) ``` 3. Tables may reference themselves recursively and will still be serialized properly. ```lua local t = { a = 1 } t.t = t t[t] = "test" local serialized = LibSerialize:Serialize(t) local success, tab = LibSerialize:Deserialize(serialized) assert(success) assert(tab.t.t.t.t.t.t.a == 1) assert(tab[tab.t] == "test") ``` 4. You may specify a global filter that applies to all tables encountered during serialization, and to individual tables via their metatable. ```lua local t = { a = 1, b = print, c = 3 } local nested = { a = 1, b = print, c = 3 } t.nested = nested setmetatable(nested, { __LibSerialize = { filter = function(t, k, v) return k ~= "c" end }}) local opts = { filter = function(t, k, v) return LibSerialize:IsSerializableType(k, v) end } local serialized = LibSerialize:SerializeEx(opts, t) local success, tab = LibSerialize:Deserialize(serialized) assert(success) assert(tab.a == 1) assert(tab.b == nil) assert(tab.c == 3) assert(tab.nested.a == 1) assert(tab.nested.b == nil) assert(tab.nested.c == nil) ``` 5. You may perform the serialization and deserialization operations asynchronously, to avoid blocking for excessive durations when handling large amounts of data. Note that you wouldn't call the handlers in a repeat-until loop like below, because then you're still effectively performing the operations synchronously. ```lua local t = { "test", [false] = {} } t[ t[false] ] = "hello" local co_handler = LibSerialize:SerializeAsync(t, "extra") local completed, serialized repeat completed, serialized = co_handler() until completed local completed, success, tab, str local co_handler = LibSerialize:DeserializeAsync(serialized) repeat completed, success, tab, str = co_handler() until completed assert(success) assert(tab[1] == "test") assert(tab[ tab[false] ] == "hello") assert(str == "extra") ``` 6. You may use the Reader and Writer protocols to have more control over writing the results of serialization, or how those results are read when deserializing. The below example implements the default behavior of the library using these protocols. ```lua local t = { a = 1, b = 2, c = 3 } local StandardWriter = {} function StandardWriter:Initialize() self.buffer = {} self.bufferSize = 0 end function StandardWriter:WriteString(str) self.bufferSize = self.bufferSize + 1 self.buffer[self.bufferSize] = str end function StandardWriter:Flush() local flushed = table.concat(self.buffer, "", 1, self.bufferSize) self.bufferSize = 0 return flushed end local StandardReader = {} function StandardReader:Initialize(input) self.input = input end function StandardReader:ReadBytes(startOffset, endOffset) return string.sub(self.input, startOffset, endOffset) end function StandardReader:AtEnd(offset) return offset > #self.input end StandardWriter:Initialize() local serialized = LibSerialize:SerializeEx({ writer = StandardWriter }, t) StandardReader:Initialize(serialized) local success, tab = LibSerialize:Deserialize(StandardReader) assert(success) assert(tab.a == 1) assert(tab.b == 2) assert(tab.c == 3) ``` ## Encoding format Every object is encoded as a type byte followed by type-dependent payload. For numbers, the payload is the number itself, using a number of bytes appropriate for the number. Small numbers can be embedded directly into the type byte, optionally with an additional byte following for more possible values. Negative numbers are encoded as their absolute value, with the type byte indicating that it is negative. Floats are decomposed into their eight bytes, unless serializing as a string is shorter. For strings and tables, the length/count is also encoded so that the payload doesn't need a special terminator. Small counts can be embedded directly into the type byte, whereas larger counts are encoded directly following the type byte, before the payload. Strings are stored directly, with no transformations. Tables are stored in one of three ways, depending on their layout: * Array-like: all keys are numbers starting from 1 and increasing by 1. Only the table's values are encoded. * Map-like: the table has no array-like keys. The table is encoded as key-value pairs. * Mixed: the table has both map-like and array-like keys. The table is encoded first with the values of the array-like keys, followed by key-value pairs for the map-like keys. For this version, two counts are encoded, one each for the two different portions. Strings and tables are also tracked as they are encountered, to detect reuse. If a string or table is reused, it is encoded instead as an index into the tracking table for that type. Strings must be >2 bytes in length to be tracked. Tables may reference themselves recursively. #### Type byte: The type byte uses the following formats to implement the above: * `NNNN NNN1`: a 7 bit non-negative int * `CCCC TT10`: a 2 bit type index and 4 bit count (strlen, #tab, etc.) * Followed by the type-dependent payload * `NNNN S100`: the lower four bits of a 12 bit int and 1 bit for its sign * Followed by a byte for the upper bits * `TTTT T000`: a 5 bit type index * Followed by the type-dependent payload, including count(s) if needed [Serialization Options]: #serialization-options [Deserialization Options]: #deserialization-options [Reader protocol]: #reader-protocol [Writer protocol]: #writer-protocol END_README --]] local MAJOR, MINOR = "LibSerialize", 5 local LibSerialize if LibStub then LibSerialize = LibStub:NewLibrary(MAJOR, MINOR) if not LibSerialize then return end -- This version is already loaded. else LibSerialize = {} end -- Rev the serialization version when making a breaking change. -- Make sure to handle older versions properly within LibSerialize:DeserializeValue. -- NOTE: these normally can be idential, but due to a bug when revving MINOR to 2, -- we need to support both 1 and 2 as v1 serialization versions. local SERIALIZATION_VERSION = 1 local DESERIALIZATION_VERSION = 2 --[[--------------------------------------------------------------------------- Local overrides of otherwise global library functions --]]--------------------------------------------------------------------------- local assert = assert local coroutine_create = coroutine.create local coroutine_resume = coroutine.resume local coroutine_status = coroutine.status local coroutine_yield = coroutine.yield local error = error local getmetatable = getmetatable local ipairs = ipairs local math_floor = math.floor local math_huge = math.huge local math_max = math.max local math_modf = math.modf local pairs = pairs local pcall = pcall local print = print local select = select local setmetatable = setmetatable local string_byte = string.byte local string_char = string.char local string_sub = string.sub local table_concat = table.concat local table_insert = table.insert local table_sort = table.sort local tonumber = tonumber local tostring = tostring local type = type -- Compatibility shim to allow the library to work on Lua 5.4 local unpack = unpack or table.unpack local frexp = math.frexp or function(num) if num == math_huge then return num end local fraction, exponent = num, 0 if fraction ~= 0 then while fraction >= 1 do fraction = fraction / 2 exponent = exponent + 1 end while fraction < 0.5 do fraction = fraction * 2 exponent = exponent - 1 end end return fraction, exponent end local ldexp = math.ldexp or function(m, e) return m * 2 ^ e end -- If in an environment that supports `require` and `_ENV` (note: WoW does not), -- then block reading/writing of globals. All needed globals should have been -- converted to upvalues above. if require and _ENV then _ENV = setmetatable({}, { __newindex = function(t, k, v) assert(false, "Attempt to write to global variable: " .. k) end, __index = function(t, k) assert(false, "Attempt to read global variable: " .. k) end }) end --[[--------------------------------------------------------------------------- Library defaults. --]]--------------------------------------------------------------------------- local defaultYieldCheck = function(self) self._currentObjectCount = self._currentObjectCount or 0 if self._currentObjectCount > 4096 then self._currentObjectCount = 0 return true end self._currentObjectCount = self._currentObjectCount + 1 end local defaultSerializeOptions = { errorOnUnserializableType = true, stable = false, filter = nil, writer = nil, async = false, yieldCheck = defaultYieldCheck, } local defaultAsyncOptions = { async = true, } local defaultDeserializeOptions = { async = false, yieldCheck = defaultYieldCheck, } local canSerializeFnOptions = { errorOnUnserializableType = false } --[[--------------------------------------------------------------------------- Helper functions. --]]--------------------------------------------------------------------------- -- Returns the number of bytes required to store the value, -- up to a maximum of three. Errors if three bytes is insufficient. local function GetRequiredBytes(value) if value < 256 then return 1 end if value < 65536 then return 2 end if value < 16777216 then return 3 end error("Object limit exceeded") end -- Returns the number of bytes required to store the value, -- though always returning seven if four bytes is insufficient. -- Doubles have room for 53bit numbers, so seven bits max. local function GetRequiredBytesNumber(value) if value < 256 then return 1 end if value < 65536 then return 2 end if value < 16777216 then return 3 end if value < 4294967296 then return 4 end return 7 end -- Queries a given object for the value assigned to a specific key. -- -- If the given object cannot be indexed, an error may be raised by the Lua -- implementation. local function GetValueByKey(object, key) return object[key] end -- Queries a given object for the value assigned to a specific key, returning -- it if non-nil or giving back a default. -- -- If the given object cannot be indexed, the default will be returned and -- no error raised. local function GetValueByKeyOrDefault(object, key, default) local ok, value = pcall(GetValueByKey, object, key) if not ok or value == nil then return default else return value end end -- Returns whether the value (a number) is NaN. local function IsNaN(value) -- With floating point optimizations enabled all comparisons involving -- NaNs will return true. Without them, these will both return false. return (value < 0) == (value >= 0) end -- Returns whether the value (a number) is finite, as opposed to being a -- NaN or infinity. local function IsFinite(value) return value > -math_huge and value < math_huge and not IsNaN(value) end -- Returns whether the value (a number) is fractional, -- as opposed to a whole number. local function IsFractional(value) local _, fract = math_modf(value) return fract ~= 0 end -- Returns whether the value (a number) needs to be represented as a floating -- point number due to either being fractional or non-finite. local function IsFloatingPoint(value) return IsFractional(value) or not IsFinite(value) end -- Returns true if the given table key is an integer that can reside in the -- array section of a table (keys 1 through arrayCount). local function IsArrayKey(k, arrayCount) return type(k) == "number" and k >= 1 and k <= arrayCount and not IsFloatingPoint(k) end -- Portable no-op function that does absolutely nothing, and pushes no returns -- onto the stack. local function Noop() end -- Sort compare function which is used to sort table keys to ensure that the -- serialization of maps is stable. We arbitrarily put strings first, then -- numbers, and finally booleans. local function StableKeySort(a, b) local aType = type(a) local bType = type(b) -- Put strings first if aType == "string" and bType == "string" then return a < b elseif aType == "string" then return true elseif bType == "string" then return false end -- Put numbers next if aType == "number" and bType == "number" then return a < b elseif aType == "number" then return true elseif bType == "number" then return false end -- Put booleans last if aType == "boolean" and bType == "boolean" then return (a and 1 or 0) < (b and 1 or 0) else error(("Unhandled sort type(s): %s, %s"):format(aType, bType)) end end -- Prints args to the chat window. To enable debug statements, -- do a find/replace in this file with "-- DebugPrint(" for "DebugPrint(", -- or the reverse to disable them again. local DebugPrint = function(...) print(...) end --[[--------------------------------------------------------------------------- Helpers for reading/writing streams of bytes from/to a string --]]--------------------------------------------------------------------------- -- Generic writer functions that defer their work to previously defined helpers. local function Writer_WriteString(self, str) if self.opts.async and self.opts.yieldCheck(self.asyncScratch) then coroutine_yield() end self.writeString(self.writer, str) end local function Writer_FlushWriter(self) return self.flushWriter(self.writer) end -- Functions for a writer that will lazily construct a string over multiple writes. local function BufferedWriter_WriteString(self, str) self.bufferSize = self.bufferSize + 1 self.buffer[self.bufferSize] = str end local function BufferedWriter_FlushBuffer(self) local flushed = table_concat(self.buffer, "", 1, self.bufferSize) self.bufferSize = 0 return flushed end -- Creates a writer object that will be called to write the serialized output. -- Return values: -- 1. Writer object -- 2. WriteString(obj, str) -- 3. FlushWriter(obj) local function CreateWriter(opts) -- If the supplied object implements the required functions to satisfy -- the Writer interface, it will be used exclusively. Otherwise if any -- of those are missing, the object is entirely ignored and we'll use -- the original buffer-of-strings approach. local object = { opts = opts, asyncScratch = opts.async and {} or nil, } local writeString = GetValueByKeyOrDefault(opts.writer, "WriteString", nil) if writeString == nil then -- Configure the object for the BufferedWriter approach. object.writer = object object.buffer = {} object.bufferSize = 0 object.writeString = BufferedWriter_WriteString object.flushWriter = BufferedWriter_FlushBuffer else -- Note that for custom writers if no Flush implementation is given the -- default is a no-op; this means that no values will be returned to the -- caller of Serialize/SerializeEx. It's expected in such a case that -- you will have written the strings elsewhere yourself; perhaps having -- already submitted them for transmission via a comms API for example. object.writer = opts.writer object.writeString = writeString object.flushWriter = GetValueByKeyOrDefault(opts.writer, "Flush", Noop) end return object, Writer_WriteString, Writer_FlushWriter end -- Generic reader functions that defer their work to previously defined helpers. local function Reader_ReadBytes(self, bytelen) if self.opts.async and self.opts.yieldCheck(self.asyncScratch) then coroutine_yield() end local result = self.readBytes(self.input, self.nextPos, self.nextPos + bytelen - 1) self.nextPos = self.nextPos + bytelen return result end local function Reader_AtEnd(self) return self.atEnd(self.input, self.nextPos) end -- Implements the default end-of-stream check for a reader. This requires -- that the supplied input object supports the length operator. local function GenericReader_AtEnd(input, offset) return offset > #input end -- Creates a reader object that will be called to read the to-be-deserialized input. -- Return values: -- 1. Reader object -- 2. ReadBytes(bytelen) -- 3. ReaderAtEnd() local function CreateReader(input, opts) -- We allow any type of input to be given and queried for the custom -- reader interface; any errors that arise when attempting to index these -- fields are swallowed silently with fallbacks to suitable defaults. local object = { input = input, nextPos = 1, opts = opts, asyncScratch = opts.async and {} or nil, readBytes = GetValueByKeyOrDefault(input, "ReadBytes", string_sub), atEnd = GetValueByKeyOrDefault(input, "AtEnd", GenericReader_AtEnd), } return object, Reader_ReadBytes, Reader_AtEnd end --[[--------------------------------------------------------------------------- Helpers for serializing/deserializing numbers (ints and floats) --]]--------------------------------------------------------------------------- local function FloatToString(n) if IsNaN(n) then -- nan return string_char(0xFF, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) end local sign = 0 if n < 0.0 then sign = 0x80 n = -n end local mant, expo = frexp(n) -- If n is infinity, mant will be infinity inside WoW, but NaN elsewhere. if (mant == math_huge or IsNaN(mant)) or expo > 0x400 then if sign == 0 then -- inf return string_char(0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) else -- -inf return string_char(0xFF, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) end elseif (mant == 0.0 and expo == 0) or expo < -0x3FE then -- zero return string_char(sign, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00) else expo = expo + 0x3FE mant = math_floor((mant * 2.0 - 1.0) * ldexp(0.5, 53)) return string_char(sign + math_floor(expo / 0x10), (expo % 0x10) * 0x10 + math_floor(mant / 281474976710656), math_floor(mant / 1099511627776) % 256, math_floor(mant / 4294967296) % 256, math_floor(mant / 16777216) % 256, math_floor(mant / 65536) % 256, math_floor(mant / 256) % 256, mant % 256) end end local function StringToFloat(str) local b1, b2, b3, b4, b5, b6, b7, b8 = string_byte(str, 1, 8) local sign = b1 > 0x7F local expo = (b1 % 0x80) * 0x10 + math_floor(b2 / 0x10) local mant = ((((((b2 % 0x10) * 256 + b3) * 256 + b4) * 256 + b5) * 256 + b6) * 256 + b7) * 256 + b8 if sign then sign = -1 else sign = 1 end local n if mant == 0 and expo == 0 then n = sign * 0.0 elseif expo == 0x7FF then if mant == 0 then n = sign * math_huge else n = 0.0/0.0 end else n = sign * ldexp(1.0 + mant / 4503599627370496.0, expo - 0x3FF) end return n end local function IntToString(n, required) if required == 1 then return string_char(n) elseif required == 2 then return string_char(math_floor(n / 256), n % 256) elseif required == 3 then return string_char(math_floor(n / 65536), math_floor(n / 256) % 256, n % 256) elseif required == 4 then return string_char(math_floor(n / 16777216), math_floor(n / 65536) % 256, math_floor(n / 256) % 256, n % 256) elseif required == 7 then return string_char(math_floor(n / 281474976710656) % 256, math_floor(n / 1099511627776) % 256, math_floor(n / 4294967296) % 256, math_floor(n / 16777216) % 256, math_floor(n / 65536) % 256, math_floor(n / 256) % 256, n % 256) end error("Invalid required bytes: " .. required) end local function StringToInt(str, required) if required == 1 then return string_byte(str) elseif required == 2 then local b1, b2 = string_byte(str, 1, 2) return b1 * 256 + b2 elseif required == 3 then local b1, b2, b3 = string_byte(str, 1, 3) return (b1 * 256 + b2) * 256 + b3 elseif required == 4 then local b1, b2, b3, b4 = string_byte(str, 1, 4) return ((b1 * 256 + b2) * 256 + b3) * 256 + b4 elseif required == 7 then local b1, b2, b3, b4, b5, b6, b7, b8 = 0, string_byte(str, 1, 7) return ((((((b1 * 256 + b2) * 256 + b3) * 256 + b4) * 256 + b5) * 256 + b6) * 256 + b7) * 256 + b8 end error("Invalid required bytes: " .. required) end --[[--------------------------------------------------------------------------- Internal functionality: The `LibSerializeInt` table contains internal, immutable state (functions, tables) that is copied to a new table each time serialization/deserialization is invoked, so that each invocation has its own state encapsulated. Copying the state is preferred to a metatable, since we don't want to pay the cost of the indirection overhead every time we access one of the copied keys. --]]--------------------------------------------------------------------------- local LibSerializeInt = {} local function CreateSerializer(opts, ...) local ser = {} -- Copy the state from LibSerializeInt. for k, v in pairs(LibSerializeInt) do ser[k] = v end -- Initialize string/table reference storage. ser._stringRefs = {} ser._tableRefs = {} -- Create a combined options table, starting with the defaults -- and then overwriting any user-supplied keys. ser._opts = {} for k, v in pairs(defaultSerializeOptions) do ser._opts[k] = v end for k, v in pairs(opts) do ser._opts[k] = v end -- Create the writer. ser._writer, ser._writeString, ser._flushWriter = CreateWriter(ser._opts) -- If the input was passed to this function, stash it away. if select("#", ...) ~= 0 then ser._input = {...} ser._inputLen = select("#", ...) end return ser end local function Serialize(ser, ...) -- If the input was previously stashed away, use that instead. if ser._input then assert(select("#", ...) == 0, "Input args should only be passed one way") local input = ser._input ser._input = nil return Serialize(ser, unpack(input, 1, ser._inputLen)) end ser:_WriteByte(SERIALIZATION_VERSION) for i = 1, select("#", ...) do local input = select(i, ...) if not ser:_WriteObject(input) then -- An unserializable object was passed as an argument. -- Write nil into its slot so that we deserialize a -- consistent number of objects from the resulting string. ser:_WriteObject(nil) end end return ser._flushWriter(ser._writer) end local function CheckSerializationProgress(thread, co_success, result) if not co_success then return error(result) elseif coroutine_status(thread) ~= 'dead' then return false else return true, result end end local function CreateDeserializer(input, opts) local deser = {} -- Copy the state from LibSerializeInt. for k, v in pairs(LibSerializeInt) do deser[k] = v end -- Initialize string/table reference storage. deser._stringRefs = {} deser._tableRefs = {} -- Create a combined options table, starting with the defaults -- and then overwriting any user-supplied keys. deser._opts = {} for k, v in pairs(defaultDeserializeOptions) do deser._opts[k] = v end for k, v in pairs(opts) do deser._opts[k] = v end -- Create the reader. deser._reader, deser._readBytes, deser._readerAtEnd = CreateReader(input, deser._opts) return deser end local function Deserialize(deser) -- Since there's only one compression version currently, -- no extra work needs to be done to decode the data. local version = deser:_ReadByte() assert(version <= DESERIALIZATION_VERSION, "Unknown serialization version!") -- Since the objects we read may be nil, we need to explicitly -- track the number of results and assign by index so that we -- can call unpack() successfully at the end. local output = {} local outputSize = 0 while not deser._readerAtEnd(deser._reader) do outputSize = outputSize + 1 output[outputSize] = deser:_ReadObject() end return unpack(output, 1, outputSize) end local function CheckDeserializationProgress(thread, co_success, ...) if not co_success then return true, false, ... elseif coroutine_status(thread) ~= "dead" then return false else return true, true, ... end end --[[--------------------------------------------------------------------------- Object reuse: As strings/tables are serialized or deserialized, they are stored in a lookup table in case they're encountered again, at which point they can be referenced by their index into their table rather than repeating the string contents. --]]--------------------------------------------------------------------------- function LibSerializeInt:_AddReference(refs, value) local ref = #refs + 1 refs[ref] = value refs[value] = ref end --[[--------------------------------------------------------------------------- Read (deserialization) support. --]]--------------------------------------------------------------------------- function LibSerializeInt:_ReadObject() local value = self:_ReadByte() if value % 2 == 1 then -- Number embedded in the top 7 bits. local num = (value - 1) / 2 -- DebugPrint("Found embedded number (1byte):", value, num) return num end if value % 4 == 2 then -- Type with embedded count. Extract both. -- The type is in bits 3-4, count in 5-8. local typ = (value - 2) / 4 local count = (typ - typ % 4) / 4 typ = typ % 4 -- DebugPrint("Found type with embedded count:", value, typ, count) return self._EmbeddedReaderTable[typ](self, count) end if value % 8 == 4 then -- Number embedded in the top 4 bits, plus an additional byte's worth (so 12 bits). -- If bit 4 is set, the number is negative. local packed = self:_ReadByte() * 256 + value local num if value % 16 == 12 then num = -(packed - 12) / 16 else num = (packed - 4) / 16 end -- DebugPrint("Found embedded number (2bytes):", value, packed, num) return num end -- Otherwise, the type index is embedded in the upper 5 bits. local typ = value / 8 -- DebugPrint("Found type:", value, typ) return self._ReaderTable[typ](self) end function LibSerializeInt:_ReadTable(entryCount, value) -- DebugPrint("Extracting keys/values for table:", entryCount) if value == nil then value = {} self:_AddReference(self._tableRefs, value) end for _ = 1, entryCount do local k, v = self:_ReadPair(self._ReadObject) value[k] = v end return value end function LibSerializeInt:_ReadArray(entryCount, value) -- DebugPrint("Extracting values for array:", entryCount) if value == nil then value = {} self:_AddReference(self._tableRefs, value) end for i = 1, entryCount do value[i] = self:_ReadObject() end return value end function LibSerializeInt:_ReadMixed(arrayCount, mapCount) -- DebugPrint("Extracting values for mixed table:", arrayCount, mapCount) local value = {} self:_AddReference(self._tableRefs, value) self:_ReadArray(arrayCount, value) self:_ReadTable(mapCount, value) return value end function LibSerializeInt:_ReadString(len) -- DebugPrint("Reading string,", len) local value = self._readBytes(self._reader, len) if len > 2 then self:_AddReference(self._stringRefs, value) end return value end function LibSerializeInt:_ReadByte() -- DebugPrint("Reading byte") return self:_ReadInt(1) end function LibSerializeInt:_ReadInt(required) -- DebugPrint("Reading int", required) return StringToInt(self._readBytes(self._reader, required), required) end function LibSerializeInt:_ReadPair(fn, ...) local first = fn(self, ...) local second = fn(self, ...) return first, second end local embeddedIndexShift = 4 local embeddedCountShift = 16 LibSerializeInt._EmbeddedIndex = { STRING = 0, TABLE = 1, ARRAY = 2, MIXED = 3, } LibSerializeInt._EmbeddedReaderTable = { [LibSerializeInt._EmbeddedIndex.STRING] = function(self, c) return self:_ReadString(c) end, [LibSerializeInt._EmbeddedIndex.TABLE] = function(self, c) return self:_ReadTable(c) end, [LibSerializeInt._EmbeddedIndex.ARRAY] = function(self, c) return self:_ReadArray(c) end, -- For MIXED, the 4-bit count contains two 2-bit counts that are one less than the true count. [LibSerializeInt._EmbeddedIndex.MIXED] = function(self, c) return self:_ReadMixed((c % 4) + 1, math_floor(c / 4) + 1) end, } local readerIndexShift = 8 LibSerializeInt._ReaderIndex = { NIL = 0, NUM_16_POS = 1, NUM_16_NEG = 2, NUM_24_POS = 3, NUM_24_NEG = 4, NUM_32_POS = 5, NUM_32_NEG = 6, NUM_64_POS = 7, NUM_64_NEG = 8, NUM_FLOAT = 9, NUM_FLOATSTR_POS = 10, NUM_FLOATSTR_NEG = 11, BOOL_T = 12, BOOL_F = 13, STR_8 = 14, STR_16 = 15, STR_24 = 16, TABLE_8 = 17, TABLE_16 = 18, TABLE_24 = 19, ARRAY_8 = 20, ARRAY_16 = 21, ARRAY_24 = 22, MIXED_8 = 23, MIXED_16 = 24, MIXED_24 = 25, STRINGREF_8 = 26, STRINGREF_16 = 27, STRINGREF_24 = 28, TABLEREF_8 = 29, TABLEREF_16 = 30, TABLEREF_24 = 31, } LibSerializeInt._ReaderTable = { -- Nil [LibSerializeInt._ReaderIndex.NIL] = function(self) return nil end, -- Numbers (ones requiring <=12 bits are handled separately) [LibSerializeInt._ReaderIndex.NUM_16_POS] = function(self) return self:_ReadInt(2) end, [LibSerializeInt._ReaderIndex.NUM_16_NEG] = function(self) return -self:_ReadInt(2) end, [LibSerializeInt._ReaderIndex.NUM_24_POS] = function(self) return self:_ReadInt(3) end, [LibSerializeInt._ReaderIndex.NUM_24_NEG] = function(self) return -self:_ReadInt(3) end, [LibSerializeInt._ReaderIndex.NUM_32_POS] = function(self) return self:_ReadInt(4) end, [LibSerializeInt._ReaderIndex.NUM_32_NEG] = function(self) return -self:_ReadInt(4) end, [LibSerializeInt._ReaderIndex.NUM_64_POS] = function(self) return self:_ReadInt(7) end, [LibSerializeInt._ReaderIndex.NUM_64_NEG] = function(self) return -self:_ReadInt(7) end, [LibSerializeInt._ReaderIndex.NUM_FLOAT] = function(self) return StringToFloat(self._readBytes(self._reader, 8)) end, [LibSerializeInt._ReaderIndex.NUM_FLOATSTR_POS] = function(self) return tonumber(self._readBytes(self._reader, self:_ReadByte())) end, [LibSerializeInt._ReaderIndex.NUM_FLOATSTR_NEG] = function(self) return -tonumber(self._readBytes(self._reader, self:_ReadByte())) end, -- Booleans [LibSerializeInt._ReaderIndex.BOOL_T] = function(self) return true end, [LibSerializeInt._ReaderIndex.BOOL_F] = function(self) return false end, -- Strings (encoded as size + buffer) [LibSerializeInt._ReaderIndex.STR_8] = function(self) return self:_ReadString(self:_ReadByte()) end, [LibSerializeInt._ReaderIndex.STR_16] = function(self) return self:_ReadString(self:_ReadInt(2)) end, [LibSerializeInt._ReaderIndex.STR_24] = function(self) return self:_ReadString(self:_ReadInt(3)) end, -- Tables (encoded as count + key/value pairs) [LibSerializeInt._ReaderIndex.TABLE_8] = function(self) return self:_ReadTable(self:_ReadByte()) end, [LibSerializeInt._ReaderIndex.TABLE_16] = function(self) return self:_ReadTable(self:_ReadInt(2)) end, [LibSerializeInt._ReaderIndex.TABLE_24] = function(self) return self:_ReadTable(self:_ReadInt(3)) end, -- Arrays (encoded as count + values) [LibSerializeInt._ReaderIndex.ARRAY_8] = function(self) return self:_ReadArray(self:_ReadByte()) end, [LibSerializeInt._ReaderIndex.ARRAY_16] = function(self) return self:_ReadArray(self:_ReadInt(2)) end, [LibSerializeInt._ReaderIndex.ARRAY_24] = function(self) return self:_ReadArray(self:_ReadInt(3)) end, -- Mixed arrays/maps (encoded as arrayCount + mapCount + arrayValues + key/value pairs) [LibSerializeInt._ReaderIndex.MIXED_8] = function(self) return self:_ReadMixed(self:_ReadPair(self._ReadByte)) end, [LibSerializeInt._ReaderIndex.MIXED_16] = function(self) return self:_ReadMixed(self:_ReadPair(self._ReadInt, 2)) end, [LibSerializeInt._ReaderIndex.MIXED_24] = function(self) return self:_ReadMixed(self:_ReadPair(self._ReadInt, 3)) end, -- Previously referenced strings [LibSerializeInt._ReaderIndex.STRINGREF_8] = function(self) return self._stringRefs[self:_ReadByte()] end, [LibSerializeInt._ReaderIndex.STRINGREF_16] = function(self) return self._stringRefs[self:_ReadInt(2)] end, [LibSerializeInt._ReaderIndex.STRINGREF_24] = function(self) return self._stringRefs[self:_ReadInt(3)] end, -- Previously referenced tables [LibSerializeInt._ReaderIndex.TABLEREF_8] = function(self) return self._tableRefs[self:_ReadByte()] end, [LibSerializeInt._ReaderIndex.TABLEREF_16] = function(self) return self._tableRefs[self:_ReadInt(2)] end, [LibSerializeInt._ReaderIndex.TABLEREF_24] = function(self) return self._tableRefs[self:_ReadInt(3)] end, } --[[--------------------------------------------------------------------------- Write (serialization) support. --]]--------------------------------------------------------------------------- -- Returns the appropriate function from the writer table for the object's type. -- If the object's type isn't supported and opts.errorOnUnserializableType is true, -- then an error will be raised. function LibSerializeInt:_GetWriteFn(obj) local typ = type(obj) local writeFn = self._WriterTable[typ] if not writeFn and self._opts.errorOnUnserializableType then error(("Unhandled type: %s"):format(typ)) end return writeFn end -- Returns true if all of the variadic arguments are serializable. -- Note that _GetWriteFn will raise a Lua error if it finds an -- unserializable type, unless this behavior is suppressed via options. function LibSerializeInt:_CanSerialize(...) for i = 1, select("#", ...) do local obj = select(i, ...) local writeFn = self:_GetWriteFn(obj) if not writeFn then return false end end return true end -- Returns true if the table's key/value pair should be serialized. -- Both filter functions (if present) must return true, and the -- key/value types must be serializable. Note that _CanSerialize -- will raise a Lua error if it finds an unserializable type, unless -- this behavior is suppressed via options. function LibSerializeInt:_ShouldSerialize(t, k, v, filterFn) return (not self._opts.filter or self._opts.filter(t, k, v)) and (not filterFn or filterFn(t, k, v)) and self:_CanSerialize(k, v) end -- Note that _GetWriteFn will raise a Lua error if it finds an -- unserializable type, unless this behavior is suppressed via options. function LibSerializeInt:_WriteObject(obj) local writeFn = self:_GetWriteFn(obj) if not writeFn then return false end writeFn(self, obj) return true end function LibSerializeInt:_WriteByte(value) self:_WriteInt(value, 1) end function LibSerializeInt:_WriteInt(n, threshold) self._writeString(self._writer, IntToString(n, threshold)) end -- Lookup tables to map the number of required bytes to the -- appropriate reader table index. local numberIndices = { [2] = LibSerializeInt._ReaderIndex.NUM_16_POS, [3] = LibSerializeInt._ReaderIndex.NUM_24_POS, [4] = LibSerializeInt._ReaderIndex.NUM_32_POS, [7] = LibSerializeInt._ReaderIndex.NUM_64_POS, } local stringIndices = { [1] = LibSerializeInt._ReaderIndex.STR_8, [2] = LibSerializeInt._ReaderIndex.STR_16, [3] = LibSerializeInt._ReaderIndex.STR_24, } local tableIndices = { [1] = LibSerializeInt._ReaderIndex.TABLE_8, [2] = LibSerializeInt._ReaderIndex.TABLE_16, [3] = LibSerializeInt._ReaderIndex.TABLE_24, } local arrayIndices = { [1] = LibSerializeInt._ReaderIndex.ARRAY_8, [2] = LibSerializeInt._ReaderIndex.ARRAY_16, [3] = LibSerializeInt._ReaderIndex.ARRAY_24, } local mixedIndices = { [1] = LibSerializeInt._ReaderIndex.MIXED_8, [2] = LibSerializeInt._ReaderIndex.MIXED_16, [3] = LibSerializeInt._ReaderIndex.MIXED_24, } local stringRefIndices = { [1] = LibSerializeInt._ReaderIndex.STRINGREF_8, [2] = LibSerializeInt._ReaderIndex.STRINGREF_16, [3] = LibSerializeInt._ReaderIndex.STRINGREF_24, } local tableRefIndices = { [1] = LibSerializeInt._ReaderIndex.TABLEREF_8, [2] = LibSerializeInt._ReaderIndex.TABLEREF_16, [3] = LibSerializeInt._ReaderIndex.TABLEREF_24, } LibSerializeInt._WriterTable = { ["nil"] = function(self) -- DebugPrint("Serializing nil") self:_WriteByte(readerIndexShift * self._ReaderIndex.NIL) end, ["number"] = function(self, num) if IsFloatingPoint(num) then -- DebugPrint("Serializing float:", num) -- Normally a float takes 8 bytes. See if it's cheaper to encode as a string. -- If we encode as a string, though, we'll need a byte for its length. -- -- Note that we only string encode finite values due to potential differences -- in encode/decode behaviour with such representations in some -- environments. local sign = 0 local numAbs = num if num < 0 then sign = readerIndexShift numAbs = -num end local asString = tostring(numAbs) if #asString < 7 and tonumber(asString) == numAbs and IsFinite(numAbs) then self:_WriteByte(sign + readerIndexShift * self._ReaderIndex.NUM_FLOATSTR_POS) self:_WriteByte(#asString, 1) self._writeString(self._writer, asString) else self:_WriteByte(readerIndexShift * self._ReaderIndex.NUM_FLOAT) self._writeString(self._writer, FloatToString(num)) end elseif num > -4096 and num < 4096 then -- The type byte supports two modes by which a number can be embedded: -- A 1-byte mode for 7-bit numbers, and a 2-byte mode for 12-bit numbers. if num >= 0 and num < 128 then -- DebugPrint("Serializing embedded number (1byte):", num) self:_WriteByte(num * 2 + 1) else -- DebugPrint("Serializing embedded number (2bytes):", num) local sign = 0 if num < 0 then sign = 8 num = -num end num = num * 16 + sign + 4 local upper, lower = math_floor(num / 256), num % 256 self:_WriteByte(lower) self:_WriteByte(upper) end else -- DebugPrint("Serializing number:", num) local sign = 0 if num < 0 then num = -num sign = readerIndexShift end local required = GetRequiredBytesNumber(num) self:_WriteByte(sign + readerIndexShift * numberIndices[required]) self:_WriteInt(num, required) end end, ["boolean"] = function(self, bool) -- DebugPrint("Serializing bool:", bool) self:_WriteByte(readerIndexShift * (bool and self._ReaderIndex.BOOL_T or self._ReaderIndex.BOOL_F)) end, ["string"] = function(self, str) local ref = self._stringRefs[str] if ref then -- DebugPrint("Serializing string ref:", str) local required = GetRequiredBytes(ref) self:_WriteByte(readerIndexShift * stringRefIndices[required]) self:_WriteInt(self._stringRefs[str], required) else local len = #str if len < 16 then -- Short lengths can be embedded directly into the type byte. -- DebugPrint("Serializing string, embedded count:", str, len) self:_WriteByte(embeddedCountShift * len + embeddedIndexShift * self._EmbeddedIndex.STRING + 2) else -- DebugPrint("Serializing string:", str, len) local required = GetRequiredBytes(len) self:_WriteByte(readerIndexShift * stringIndices[required]) self:_WriteInt(len, required) end self._writeString(self._writer, str) if len > 2 then self:_AddReference(self._stringRefs, str) end end end, ["table"] = function(self, tab) local ref = self._tableRefs[tab] if ref then -- DebugPrint("Serializing table ref:", tab) local required = GetRequiredBytes(ref) self:_WriteByte(readerIndexShift * tableRefIndices[required]) self:_WriteInt(self._tableRefs[tab], required) else -- Add a reference before trying to serialize the table's contents, -- so that if the table recursively references itself, we can still -- properly serialize it. self:_AddReference(self._tableRefs, tab) local filter local mt = getmetatable(tab) if mt and type(mt) == "table" and mt.__LibSerialize then filter = mt.__LibSerialize.filter end -- First determine the "proper" length of the array portion of the table, -- which terminates at its first nil value. Note that some values in this -- range may not be serializable, which is fine - we'll handle them later. -- It's better to maximize the number of values that can be serialized -- without needing to also serialize their keys. local arrayCount, serializableArrayCount = 0, 0 local entireArraySerializable = true local totalArraySerializable = 0 for i, v in ipairs(tab) do arrayCount = i if self:_ShouldSerialize(tab, i, v, filter) then totalArraySerializable = totalArraySerializable + 1 if entireArraySerializable then serializableArrayCount = i end else entireArraySerializable = false end end -- Consider the array portion as a series of zero or more serializable -- entries followed by zero or more entries that may or may not be -- serializable. For the latter portion, we can either write them in -- the array portion, padding the unserializable entries with nils, -- or just write them as key/value pairs in the map portion. We'll choose -- the former if there are more serializable entries in this portion than -- unserializable, or the latter if more are unserializable. if arrayCount - totalArraySerializable > totalArraySerializable - serializableArrayCount then arrayCount = serializableArrayCount entireArraySerializable = true end -- Next determine the count of all entries in the table whose keys are not -- included in the array portion, only counting keys that are serializable. local mapCount = 0 local entireMapSerializable = true for k, v in pairs(tab) do if not IsArrayKey(k, arrayCount) then if self:_ShouldSerialize(tab, k, v, filter) then mapCount = mapCount + 1 else entireMapSerializable = false end end end if mapCount == 0 then -- The table is an array. We can avoid writing the keys. if arrayCount < 16 then -- Short counts can be embedded directly into the type byte. -- DebugPrint("Serializing array, embedded count:", arrayCount) self:_WriteByte(embeddedCountShift * arrayCount + embeddedIndexShift * self._EmbeddedIndex.ARRAY + 2) else -- DebugPrint("Serializing array:", arrayCount) local required = GetRequiredBytes(arrayCount) self:_WriteByte(readerIndexShift * arrayIndices[required]) self:_WriteInt(arrayCount, required) end for i = 1, arrayCount do local v = tab[i] if entireArraySerializable or self:_ShouldSerialize(tab, i, v, filter) then self:_WriteObject(v) else -- Since the keys are being omitted, write a `nil` entry -- for any values that shouldn't be serialized. self:_WriteObject(nil) end end elseif arrayCount ~= 0 then -- The table has both array and dictionary keys. We can still save space -- by writing the array values first without keys. if mapCount < 5 and arrayCount < 5 then -- Short counts can be embedded directly into the type byte. -- They have to be really short though, since we have two counts. -- Since neither can be zero (this is a mixed table), -- we can get away with not being able to represent 0. -- DebugPrint("Serializing mixed array-table, embedded counts:", arrayCount, mapCount) local combined = (mapCount - 1) * 4 + arrayCount - 1 self:_WriteByte(embeddedCountShift * combined + embeddedIndexShift * self._EmbeddedIndex.MIXED + 2) else -- Use the max required bytes for the two counts. -- DebugPrint("Serializing mixed array-table:", arrayCount, mapCount) local required = math_max(GetRequiredBytes(mapCount), GetRequiredBytes(arrayCount)) self:_WriteByte(readerIndexShift * mixedIndices[required]) self:_WriteInt(arrayCount, required) self:_WriteInt(mapCount, required) end for i = 1, arrayCount do local v = tab[i] if entireArraySerializable or self:_ShouldSerialize(tab, i, v, filter) then self:_WriteObject(v) else -- Since the keys are being omitted, write a `nil` entry -- for any values that shouldn't be serialized. self:_WriteObject(nil) end end local mapCountWritten = 0 if self._opts.stable then -- In order to ensure that the output is stable, we sort the map keys and write -- them in the sorted order. local mapKeys = {} for k, v in pairs(tab) do -- Exclude keys that have already been written via the previous loop. if not IsArrayKey(k, arrayCount) and (entireMapSerializable or self:_ShouldSerialize(tab, k, v, filter)) then table_insert(mapKeys, k) end end table_sort(mapKeys, StableKeySort) for _, k in ipairs(mapKeys) do self:_WriteObject(k) self:_WriteObject(tab[k]) mapCountWritten = mapCountWritten + 1 end else for k, v in pairs(tab) do -- Exclude keys that have already been written via the previous loop. if not IsArrayKey(k, arrayCount) and (entireMapSerializable or self:_ShouldSerialize(tab, k, v, filter)) then self:_WriteObject(k) self:_WriteObject(v) mapCountWritten = mapCountWritten + 1 end end end assert(mapCount == mapCountWritten) else -- The table has only dictionary keys, so we'll write them all. if mapCount < 16 then -- Short counts can be embedded directly into the type byte. -- DebugPrint("Serializing table, embedded count:", mapCount) self:_WriteByte(embeddedCountShift * mapCount + embeddedIndexShift * self._EmbeddedIndex.TABLE + 2) else -- DebugPrint("Serializing table:", mapCount) local required = GetRequiredBytes(mapCount) self:_WriteByte(readerIndexShift * tableIndices[required]) self:_WriteInt(mapCount, required) end if self._opts.stable then -- In order to ensure that the output is stable, we sort the map keys and write -- them in the sorted order. local mapKeys = {} for k, v in pairs(tab) do if entireMapSerializable or self:_ShouldSerialize(tab, k, v, filter) then table_insert(mapKeys, k) end end table_sort(mapKeys, StableKeySort) for _, k in ipairs(mapKeys) do self:_WriteObject(k) self:_WriteObject(tab[k]) end else for k, v in pairs(tab) do if entireMapSerializable or self:_ShouldSerialize(tab, k, v, filter) then self:_WriteObject(k) self:_WriteObject(v) end end end end end end, } --[[--------------------------------------------------------------------------- API support. --]]--------------------------------------------------------------------------- local serializeTester = CreateSerializer(canSerializeFnOptions) function LibSerialize:IsSerializableType(...) return serializeTester:_CanSerialize(canSerializeFnOptions, ...) end function LibSerialize:SerializeEx(opts, ...) opts = opts or defaultSerializeOptions if opts.async then local ser = CreateSerializer(opts, ...) local thread = coroutine_create(Serialize) local inputSize = select("#", ...) local input = {...} -- return coroutine handler return function() return CheckSerializationProgress(thread, coroutine_resume(thread, ser)) end else return Serialize(CreateSerializer(opts), ...) end end function LibSerialize:Serialize(...) return self:SerializeEx(defaultSerializeOptions, ...) end function LibSerialize:SerializeAsync(...) return self:SerializeEx(defaultAsyncOptions, ...) end function LibSerialize:SerializeAsyncEx(opts, ...) opts = opts or defaultAsyncOptions opts.async = true return self:SerializeEx(opts, ...) end function LibSerialize:DeserializeValue(input, opts) opts = opts or defaultDeserializeOptions local deser = CreateDeserializer(input, opts) if opts.async then local thread = coroutine_create(Deserialize) return function() return CheckDeserializationProgress(thread, coroutine_resume(thread, deser)) end else return Deserialize(deser) end end function LibSerialize:Deserialize(input) return pcall(self.DeserializeValue, self, input) end function LibSerialize:DeserializeAsync(input, opts) opts = opts or defaultAsyncOptions opts.async = true return self:DeserializeValue(input, opts) end return LibSerialize