Package org.opencv.ml
Class LogisticRegression
java.lang.Object
org.opencv.core.Algorithm
org.opencv.ml.StatModel
org.opencv.ml.LogisticRegression
Implements Logistic Regression classifier.
SEE: REF: ml_intro_lr
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final intstatic final intstatic final intstatic final intstatic final intFields inherited from class org.opencv.ml.StatModel
COMPRESSED_INPUT, PREPROCESSED_INPUT, RAW_OUTPUT, UPDATE_MODEL -
Method Summary
Modifier and TypeMethodDescriptionstatic LogisticRegression__fromPtr__(long addr) static LogisticRegressioncreate()Creates empty model.This function returns the trained parameters arranged across rows.intSEE: setIterationsdoubleSEE: setLearningRateintSEE: setMiniBatchSizeintSEE: setRegularizationSEE: setTermCriteriaintSEE: setTrainMethodstatic LogisticRegressionLoads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk.static LogisticRegressionLoads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk.floatPredicts responses for input samples and returns a float type.floatPredicts responses for input samples and returns a float type.floatPredicts responses for input samples and returns a float type.voidsetIterations(int val) getIterations SEE: getIterationsvoidsetLearningRate(double val) getLearningRate SEE: getLearningRatevoidsetMiniBatchSize(int val) getMiniBatchSize SEE: getMiniBatchSizevoidsetRegularization(int val) getRegularization SEE: getRegularizationvoidgetTermCriteria SEE: getTermCriteriavoidsetTrainMethod(int val) getTrainMethod SEE: getTrainMethodMethods inherited from class org.opencv.ml.StatModel
calcError, empty, getVarCount, isClassifier, isTrained, train, train, trainMethods inherited from class org.opencv.core.Algorithm
clear, getDefaultName, getNativeObjAddr, save
-
Field Details
-
BATCH
public static final int BATCH- See Also:
-
MINI_BATCH
public static final int MINI_BATCH- See Also:
-
REG_DISABLE
public static final int REG_DISABLE- See Also:
-
REG_L1
public static final int REG_L1- See Also:
-
REG_L2
public static final int REG_L2- See Also:
-
-
Method Details
-
__fromPtr__
-
getLearningRate
public double getLearningRate()SEE: setLearningRate- Returns:
- automatically generated
-
setLearningRate
public void setLearningRate(double val) getLearningRate SEE: getLearningRate- Parameters:
val- automatically generated
-
getIterations
public int getIterations()SEE: setIterations- Returns:
- automatically generated
-
setIterations
public void setIterations(int val) getIterations SEE: getIterations- Parameters:
val- automatically generated
-
getRegularization
public int getRegularization()SEE: setRegularization- Returns:
- automatically generated
-
setRegularization
public void setRegularization(int val) getRegularization SEE: getRegularization- Parameters:
val- automatically generated
-
getTrainMethod
public int getTrainMethod()SEE: setTrainMethod- Returns:
- automatically generated
-
setTrainMethod
public void setTrainMethod(int val) getTrainMethod SEE: getTrainMethod- Parameters:
val- automatically generated
-
getMiniBatchSize
public int getMiniBatchSize()SEE: setMiniBatchSize- Returns:
- automatically generated
-
setMiniBatchSize
public void setMiniBatchSize(int val) getMiniBatchSize SEE: getMiniBatchSize- Parameters:
val- automatically generated
-
getTermCriteria
SEE: setTermCriteria- Returns:
- automatically generated
-
setTermCriteria
getTermCriteria SEE: getTermCriteria- Parameters:
val- automatically generated
-
predict
Predicts responses for input samples and returns a float type.- Overrides:
predictin classStatModel- Parameters:
samples- The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.results- Predicted labels as a column matrix of type CV_32S.flags- Not used.- Returns:
- automatically generated
-
predict
Predicts responses for input samples and returns a float type.- Overrides:
predictin classStatModel- Parameters:
samples- The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.results- Predicted labels as a column matrix of type CV_32S.- Returns:
- automatically generated
-
predict
Predicts responses for input samples and returns a float type. -
get_learnt_thetas
This function returns the trained parameters arranged across rows. For a two class classification problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F.- Returns:
- automatically generated
-
create
Creates empty model. Creates Logistic Regression model with parameters given.- Returns:
- automatically generated
-
load
Loads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
filepath- path to serialized LogisticRegressionnodeName- name of node containing the classifier- Returns:
- automatically generated
-
load
Loads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
filepath- path to serialized LogisticRegression- Returns:
- automatically generated
-