Package org.opencv.video
Class TrackerVit
java.lang.Object
org.opencv.video.Tracker
org.opencv.video.TrackerVit
the VIT tracker is a super lightweight dnn-based general object tracking.
VIT tracker is much faster and extremely lightweight due to special model structure, the model file is about 767KB.
Model download link: https://github.com/opencv/opencv_zoo/tree/main/models/object_tracking_vittrack
Author: PengyuLiu, 1872918507@qq.com
-
Method Summary
Modifier and TypeMethodDescriptionstatic TrackerVit__fromPtr__(long addr) static TrackerVitcreate()Constructorstatic TrackerVitConstructorstatic TrackerVitConstructorstatic TrackerVitConstructorstatic TrackerVitConstructorstatic TrackerVitcreate(TrackerVit_Params parameters) ConstructorfloatReturn tracking scoreMethods inherited from class org.opencv.video.Tracker
getNativeObjAddr, init, update
-
Method Details
-
__fromPtr__
-
create
Constructor- Parameters:
parameters- vit tracker parameters TrackerVit::Params- Returns:
- automatically generated
-
create
Constructor- Returns:
- automatically generated
-
create
public static TrackerVit create(Net model, Scalar meanvalue, Scalar stdvalue, float tracking_score_threshold) Constructor- Parameters:
model- pre-loaded DNN modelmeanvalue- mean value for image preprocessingstdvalue- std value for image preprocessingtracking_score_threshold- threshold for tracking score- Returns:
- automatically generated
-
create
Constructor- Parameters:
model- pre-loaded DNN modelmeanvalue- mean value for image preprocessingstdvalue- std value for image preprocessing- Returns:
- automatically generated
-
create
Constructor- Parameters:
model- pre-loaded DNN modelmeanvalue- mean value for image preprocessing- Returns:
- automatically generated
-
create
Constructor- Parameters:
model- pre-loaded DNN model- Returns:
- automatically generated
-
getTrackingScore
public float getTrackingScore()Return tracking score- Returns:
- automatically generated
-