You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1098 lines
41 KiB

----------------------------------
--[[
Ant Colony Optimization (ACO) for Travelling Salesman Problem (TSP)
for Routes (a World of Warcraft addon)
Copyright (C) 2011 Xinhuan
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.
]]
---------------------------------
--[[
Ant Colony Optimization and the Travelling Salesman Problem
The Travelling Salesman Problem (TSP) consists of finding the shortest tour
between n cities visiting each once only and ending at the starting point. Let
d(i,j) be the distance between cities i and j and t(i,j) the amount of pheromone
on the edge that connects i and j. t(i,j) is initially set to a small value
t(0), the same for all edges (i,j). The algorithm consists of a series of
iterations.
One iteration of the simplest ACO algorithm applied to the TSP can be summarized
as follows: (1) a set of m artificial ants are initially located at randomly
selected cities; (2) each ant, denoted by k, constructs a complete tour,
visiting each city exactly once, always maintaining a list J(k) of cities that
remain to be visited; (3) an ant located at city i hops to a city j, selected
among the cities that have not yet been visited, according to probability
p(k,i,j) = (t(i,j)^a * d(i,j)^-b) / sum(t(i,l)^a * d(i,l)^-b, all l in J(k))
where a and b are two positive parameters which govern the respective influences
of pheromone and distance; (4) when every ant has completed a tour, pheromone
trails are updated: t(i,j) = (1-p) * t(i,j) + D(t(i,j)), where p is the
evaporation rate and D(t(i,j)) is the amount of reinforcement received by edge
(i,j). D(t(i,j)) is proportional to the quality of the solutions in which (i,j)
was used by one ant or more. More precisely, if L(k) is the length of the tour
T(k) constructed by ant k, then D(t(i,j)) = sum(D(t(k,i,j)), 1 to m) with
D(t(k,i,j)) = Q / L(k) if (i,j) is in T(k) and D(t(k,i,j)) = 0 otherwise, where
Q is a positive parameter. This reinforcement procedure reflects the idea that
pheromone density should be lower on a longer path because a longer trail is
more difficult to maintain.
Steps (1) to (4) are repeated either a predefined number of times or until a
satisfactory solution has been found. The algorithm works by reinforcing
portions of solutions that belong to good solutions and by applying a
dissipation mechanism, pheromone evaporation, which ensures that the system does
not converge early toward a poor solution. When a = 0, the algorithm implements
a probabilistic greedy search, whereby the next city is selected solely on the
basis of its distance from the current city. When b = 0, only the pheromone is
used to guide the search, which would react the way the ants do it. However, the
explicit use of distance as a criterion for path selection appears to improve
the algorithm's performance. In all other optimization applications also, an
improvement in the algorithm's performance is observed when a local measure of
greed, similar to the inverse of distance for the TSP, is included into the
local selection of portions of solution by the agents. Typical parameter values
are: m = n, a = 1, b = 5, p = 0.5, t(0) = 1e-6.
-- Inspiration for optimization from social insect behaviour
-- by E. Bonabeau, M. Dorigo & G. Theraulaz
-- NATURE, VOL 406, 6 JULY 2000, www.nature.com
]]
-- Note:
-- The functions in this file are written specifically for use with Routes
-- in mind and is not a general TSP library.
----------------------------------
-- Localize some globals
local ipairs, pairs, type = ipairs, pairs, type
local random = random
local floor, ceil = floor, ceil
local coroutine = coroutine
local tinsert, tremove = tinsert, tremove
local debugprofilestop = debugprofilestop
local inf = math.huge
local pathR = {}
local lastpath
local Routes = LibStub("AceAddon-3.0"):GetAddon("Routes")
local TSP = {}
Routes.TSP = TSP
--------------------------------
-- Background execution
local nextYield = 0
local function yield()
local t = debugprofilestop()
if t > nextYield then
nextYield = t + 30
coroutine.yield()
elseif t < nextYield then
-- Someone called debugprofilestart(), we need to reset our timer, yield anyway
nextYield = t + 30
coroutine.yield()
end
end
-----------------------------------------------------
-- Function to get the intersection point of 2 lines (x1,y1)-(x2,y2) and (sx,sy)-(ex,ey)
--[[ Unused function, its inlined in SolveTSP()
function TSP:GetIntersection(x1, y1, x2, y2, sx, sy, ex, ey)
local dx = x2-x1
local dy = y2-y1
local numer = dx*(sy-y1) - dy*(sx-x1)
local demon = dx*(sy-ey) + dy*(ex-sx)
if demon == 0 or dx == 0 then
return false
else
local u = numer / demon
local t = (sx + (ex-sx)*u - x1)/dx
if u >= 0 and u <= 1 and t >= 0 and t <= 1 then
--return sx + (ex-sx)*u, sy + (ey-sy)*u -- coordinate of intersection
return true
end
end
end]]
-----------------------------------------------------
-- Coroutine code to allow background pathing
local TSPUpdateFrame = CreateFrame("Frame")
TSPUpdateFrame.running = false
function TSPUpdateFrame:OnUpdate(elapsed)
local status, path, meta, shortestPathLength, count, timetaken = coroutine.resume(self.co)
if status then
if coroutine.status(self.co) == "dead" then
-- Function finished, return results
self:SetScript("OnUpdate", nil)
self.running = false
self.finishFunc(path, meta, shortestPathLength, count, timetaken)
self.finishFunc = nil
self.statusFunc = nil
self.co = nil
self.nodes = nil
end
else
-- An error occured in the coroutine, abort and print the error
self:SetScript("OnUpdate", nil)
self.running = false
self.co = nil
self.finishFunc = nil
self.statusFunc = nil
self.nodes = nil
Routes:Print(Routes.L["The following error occured in the background path generation coroutine, please report to Grum or Xinhuan:"])
Routes:Print(path)
end
end
function TSP:IsTSPRunning()
return TSPUpdateFrame.running, TSPUpdateFrame.nodes
end
-- Same arguments as TSP:SolveTSP(), without the "nonblocking" argument
function TSP:SolveTSPBackground(nodes, metadata, taboos, zoneID, parameters, path)
if not TSPUpdateFrame.running then
TSPUpdateFrame.co = coroutine.create(TSP.SolveTSP)
TSPUpdateFrame:SetScript("OnUpdate", TSPUpdateFrame.OnUpdate)
TSPUpdateFrame.running = true
TSPUpdateFrame.nodes = nodes
local status = coroutine.resume(TSPUpdateFrame.co, TSP, nodes, metadata, taboos, zoneID, parameters, path, true)
if status then
-- Do nothing, path isn't complete because at least 1 yield() is called.
return 1
else
-- An error occured in the coroutine, abort and return the error message.
TSPUpdateFrame.running = false
TSPUpdateFrame:SetScript("OnUpdate", nil)
TSPUpdateFrame.co = nil
return 3, path
end
else
-- There is already a TSP running
return 2
end
end
function TSP:SetFinishFunction(func)
assert(type(func) == "function", "SetFinishFunction() expected function in 1st argument, got "..type(func).." instead.")
TSPUpdateFrame.finishFunc = func
end
function TSP:SetStatusFunction(func)
assert(type(func) == "function", "SetStatusFunction() expected function in 1st argument, got "..type(func).." instead.")
TSPUpdateFrame.statusFunc = func
end
-----------------------------------
-- TSP:SolveTSP(nodes, metadata, zoneID, parameters, path, nonblocking)
-- Arguments
-- nodes - The table containing a list of Routes node IDs to path
-- This list should only contain nodes on the same map. This
-- table should be indexed numerically from nodes[1] to nodes[n].
-- metadata - The table containing the cluster metadata, if available
-- taboos - A table containing a table of taboo regions to use.
-- zoneID - The map area ID of the map that the route is to be generated on.
-- parameters - The table containing the ACO parameters to use.
-- path - An optional input table that is used to supply the result
-- table. If this is nil, the function returns a new table.
-- nonblocking - A boolean to indicate whether the function should yield() regularly.
-- Returns
-- path - The result TSP path is a table indexed numerically from path[1]
-- to path[n], a list of Routes node IDs.
-- metadata - The table containing the cluster metadata, if available
-- length - The length in yards of the path returned.
-- iteration - Number of interations taken.
-- timeTaken - Number of seconds used.
-- Notes: A new nodes[] and metadata[] table is returned. The original tables
-- sent in are unmodified.
function TSP:SolveTSP(nodes, metadata, taboos, zoneID, parameters, path, nonblocking)
-- Notes: Some of these code might look convoluted, with seemingly unnecessary use of too many locals
-- and make the code look longer. But they are for speed optimization.
assert(type(nodes) == "table", "SolveTSP() expected table in 1st argument, got "..type(nodes).." instead.")
assert(type(taboos) == "table", "SolveTSP() expected table in 3rd argument, got "..type(taboos).." instead.")
assert(type(parameters) == "table", "SolveTSP() expected table in 5th argument, got "..type(parameters).." instead.")
if type(path) == "table" then
wipe(path)
else
path = {}
end
if nonblocking then
-- Ensure that at least 1 yield() is called in a nonblocking call
coroutine.yield()
end
-- Check for trivial problem of 3 or less nodes
local numNodes = #nodes
if numNodes < 4 then
-- Trivial solution for an input size of 3 or less nodes
for i = 1, numNodes do
path[i] = nodes[i]
end
-- Create a copy of the metadata[] table too, if there is one
local metadata2
if metadata then
metadata2 = {}
for i = 1, numNodes do
metadata2[i] = {}
for j = 1, #metadata[i] do
metadata2[i][j] = metadata[i][j]
end
end
end
return path, metadata2, TSP:PathLength(path, zoneID), 0, 0
end
-- Create a copy of the nodes[] table and use this instead of the original because data could get changed
local nodes2 = {}
for i = 1, numNodes do
nodes2[i] = nodes[i]
end
local nodes = nodes2
-- Create a copy of the metadata[] table too, if there is one
local metadata2
if metadata then
metadata2 = {}
for i = 1, numNodes do
metadata2[i] = {}
for j = 1, #metadata[i] do
metadata2[i][j] = metadata[i][j]
end
end
end
local metadata = metadata2
-- Setup ACO parameters
local startTime
if nonblocking then
startTime = GetTime()
else
startTime = debugprofilestop()
end
local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID)
local INITIAL_PHEROMONE = parameters.initial_pheromone or 0.1 -- Parameter: Initial pheromone trail value
local ALPHA = parameters.alpha or 1 -- Parameter: Likelihood of ants to follow pheromone trails (larger value == more likely)
local BETA = parameters.beta or 6 -- Parameter: Likelihood of ants to choose closer nodes (larger value == more likely)
local LOCALDECAY = parameters.local_decay or 0.2 -- Parameter: Governs local trail decay rate [0, 1]
local LOCALUPDATE = parameters.local_update or 0.4 -- Parameter: Amount of pheromone to reinforce local trail update by
local GLOBALDECAY = parameters.global_decay or 0.2 -- Parameter: Governs global trail decay rate [0, 1]
local TWOOPTPASSES = parameters.twoopt_passes or 3 -- Parameter: Number of times to perform 2-opt passes
local TWOPOINTFIVEOPT = parameters.two_point_five_opt or false-- Parameter: Run improved 2-opt pass?
local QUALITY = 2 * zoneH -- Parameter: Tunable parameter that should be somewhat close to 1/4 to 1/2 (distance) of a good solution
local numAnts = ceil(2 * numNodes ^ 0.5) -- Parameter: Number of ants.
local LOCALDECAYUPDATE = LOCALDECAY * LOCALUPDATE -- Just a constant.
-- If ALPHA = 0, the closest cities are more likely to be selected.
-- If BETA = 0, only pheromone amplifications is at work.
-- The number of ants will directly determine the speed of the algorithm proportionally. More ants will get more optimal results, but don't use more ants than the number of nodes.
-- You need more ants when there are more nodes to have more chances to find a good path quickly. The usual default is numAnts = numNodes, but this takes too long in WoW.
local PRUNEDIST = zoneW * 0.30 -- Another constant for our own pruning
local shortestPathLength = math.huge
local shortestPath = {}
-- Step 1 - Initialize and generate the weight matrix, the pheromone matrix and the ants
local weight = {}
local phero = {}
local ants = {}
local prune = {}
local antprob = {}
for i = 1, numNodes do
prune[i] = {}
end
for i = 1, numNodes do
local x1, y1 = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000
local u = i*numNodes-i
weight[u] = 0
phero[u] = INITIAL_PHEROMONE
for j = i+1, numNodes do
local x2, y2 = floor(nodes[j] / 10000) / 10000, (nodes[j] % 10000) / 10000
local u, v = i*numNodes-j, j*numNodes-i
weight[u] = (((x2 - x1)*zoneW)^2 + ((y2 - y1)*zoneH)^2)^0.5 -- Calc distance between each node pair
weight[v] = weight[u]
phero[u] = INITIAL_PHEROMONE -- All pheromone trails start
phero[v] = INITIAL_PHEROMONE -- with a initial small value
-- Table containing data for 2-opt pruning operations. This is just a list of nodes that are near each node.
if weight[u] < PRUNEDIST then
tinsert(prune[i], j)
tinsert(prune[j], i)
end
-- For taboo regions
local flag = false
for m = 1, #taboos do -- loop over every taboo
local taboo_data = taboos[m].route
local last_point = taboo_data[ #taboo_data ]
local sx, sy = floor(last_point / 10000) / 10000, (last_point % 10000) / 10000
for n = 1, #taboo_data do
local point = taboo_data[n]
local ex, ey = floor(point / 10000) / 10000, (point % 10000) / 10000
-- inlined the intersection check so that it is faster
local dx = x2-x1
local dy = y2-y1
local numer = dx*(sy-y1) - dy*(sx-x1)
local demon = dx*(sy-ey) + dy*(ex-sx)
if demon ~= 0 and dx ~= 0 then
local u = numer / demon
local t = (sx + (ex-sx)*u - x1)/dx
if u >= 0 and u <= 1 and t >= 0 and t <= 1 then
flag = true
break
end
end
sx, sy = ex, ey
last_point = point
end
if flag then break end
end
if flag then -- we increase/bias the weight by a constant factor and by the zone width, since it passes thru a taboo region
weight[u] = weight[u] * 2 + zoneW
weight[v] = weight[u]
end
-- Initialize the probability table of travelling from city i to j
antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA
antprob[v] = antprob[u]
end
end
for k = 1, numAnts do
ants[k] = {}
local antpath = ants[k] -- This table will stores both the partially constructed path (from 1 to j) and the remainder unvisited nodes (from j+1 to N)
for j = 1, numNodes do
antpath[j] = j
end
end
-- Step 2 - Loop until path has small to no changes over the last MAXUNCHANGEDINTERATION iterations
local nochanges = 0
local count = 0
local MAXUNCHANGEDINTERATION = 3
if numAnts >= 25 then
MAXUNCHANGEDINTERATION = 2
end
while nochanges < MAXUNCHANGEDINTERATION do
nochanges = nochanges + 1
count = count + 1
-- Step 3 - Each ant k starts at a randomly selected node
for k = 1, numAnts do
local antpath = ants[k]
local p = random(numNodes)
antpath[1], antpath[p] = antpath[p], antpath[1]
end
-- Step 4 - Construct/path the next N-1 nodes...
for j = 1, numNodes-1 do
-- Step 5 - ...for each ant k
for k = 1, numAnts do
-- Step 6 - Calculate the probability of visiting each remainder node, and the total probability
local antpath = ants[k]
local curnode = antpath[j] -- j is the "current node" index in the path
local totalprob = 0
for i = j+1, numNodes do
local u = curnode*numNodes-antpath[i]
totalprob = totalprob + antprob[u]
end
-- Step 7 - Now randomly choose one of these nodes to go to based on the calculated probabilities
local p = totalprob * random()
totalprob = 0
for i = j+1, numNodes do
local u = curnode*numNodes-antpath[i]
totalprob = totalprob + antprob[u]
if p <= totalprob then
antpath[j+1], antpath[i] = antpath[i], antpath[j+1]
phero[u] = (1 - LOCALDECAY) * phero[u] + LOCALDECAYUPDATE -- Perform local pheromone update
antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA -- Update the probability
break
end
end
end
if nonblocking then
yield()
end
end
for k = 1, numAnts do
-- Send out status update if requested (this loop is the one that actually takes lots of time)
if nonblocking and TSPUpdateFrame.statusFunc then
TSPUpdateFrame.statusFunc(count, (k-1)/numAnts)
end
-- Step 8 -- Perform local pheromone update on the path from the last node to the first node for each ant k
local antpath = ants[k]
local curnode = antpath[numNodes]
local nextnode = antpath[1]
local u = curnode*numNodes-nextnode
phero[u] = (1 - LOCALDECAY) * phero[u] + LOCALDECAYUPDATE
antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA
-- Step 9 -- Perform 2-opt on the path to improve it
--[[for i = 1, TWOOPTPASSES do
if nonblocking then
yield()
end
if TSP:TwoOpt(antpath, weight, prune) == 0 then
break
end
end]]
while TSP:TwoOpt(antpath, weight, prune, TWOPOINTFIVEOPT, nonblocking) > 0 do
-- Cycle the last 3 nodes so that the 2-opt algorithm will work on the last
-- 3 nodes in the path that got missed (the loop goes from 1 to N-3)
tinsert(antpath, tremove(antpath, 1))
tinsert(antpath, tremove(antpath, 1))
tinsert(antpath, tremove(antpath, 1))
if nonblocking then
yield()
end
end
-- Step 10 -- At the same time, we also calculate the length of each ant's tour
local pathLength = 0
curnode = antpath[numNodes]
for i = 1, numNodes do
nextnode = antpath[i]
pathLength = pathLength + weight[curnode*numNodes-nextnode]
curnode = nextnode
end
-- Step 11 -- If this ant's path is shorter than the global shortest known solution, copy it
if pathLength < shortestPathLength then
shortestPathLength = pathLength
for i = 1, numNodes do
shortestPath[i] = antpath[i]
end
nochanges = 0 -- There were changes, so reset nochanges counter to 0
end
end
-- Step 12 - Perform global pheromone trail update on the best known solution
local curnode = shortestPath[numNodes]
local tempConstant = GLOBALDECAY * QUALITY / shortestPathLength
for i = 1, numNodes do
local nextnode = shortestPath[i]
local u = curnode*numNodes-nextnode
phero[u] = (1 - GLOBALDECAY) * phero[u] + tempConstant
antprob[u] = phero[u] ^ ALPHA / weight[u] ^ BETA -- Update the probability
curnode = nextnode
end
-- report how long path this round found (with progress==1)
if nonblocking and TSPUpdateFrame.statusFunc then
TSPUpdateFrame.statusFunc(count, 1, shortestPathLength)
yield()
end
end
do
-- Perform a non-pruned 2-opt on the final path so that there is absolutely no criss-cross
local noprune = {}
for i = 1, numNodes do
noprune[i] = {}
end
for i = 1, numNodes do
for j = i+1, numNodes do
tinsert(noprune[i], j)
tinsert(noprune[j], i)
end
end
while TSP:TwoOpt(shortestPath, weight, noprune, TWOPOINTFIVEOPT, nonblocking) > 0 do
tinsert(shortestPath, tremove(shortestPath, 1))
tinsert(shortestPath, tremove(shortestPath, 1))
tinsert(shortestPath, tremove(shortestPath, 1))
if nonblocking then
yield()
end
end
-- Recompute the path length
shortestPathLength = 0
local curnode = shortestPath[numNodes]
for i = 1, numNodes do
local nextnode = shortestPath[i]
shortestPathLength = shortestPathLength + weight[curnode*numNodes-nextnode]
curnode = nextnode
end
end
-- Step 13 -- Check the length of the original tour that was sent in in nodes[]
local pathLength = 0
for i = 2, numNodes do
pathLength = pathLength + weight[(i-1)*numNodes-i]
end
pathLength = pathLength + weight[numNodes*numNodes-1]
-- Step 14 -- Check solution with original that was sent in
if pathLength < shortestPathLength then
-- TSP didn't find a shorter solution, so copy the input to the output
for i = 1, numNodes do
path[i] = nodes[i]
end
shortestPathLength = pathLength
else
-- TSP found a shorter path than the original, convert our shortest path to the output format wanted
local meta
if metadata then
meta = {}
end
for i = 1, numNodes do
path[i] = nodes[shortestPath[i]]
if metadata then
meta[i] = metadata[shortestPath[i]]
end
end
metadata = meta -- prev metadata[] not recycled here, will go out of scope at function end and get GCed
end
lastpath = nil
-- This step is necessary because our pathlength above is calculated from biased data from taboos
shortestPathLength = TSP:PathLength(path, zoneID)
if nonblocking then
startTime = GetTime() - startTime
else
startTime = debugprofilestop() - startTime
startTime = startTime / 1000
end
return path, metadata, shortestPathLength, count, startTime
end
-- TSP:TwoOpt(path, weight)
-- Arguments
-- path - The table containing a TSP path to improve. Input must have node IDs 1-N, numerically indexed.
-- weight - The table containing the NxN weight matrix.
-- prune - The table containing the list of neighbouring nodes for each node.
-- twoPointFiveOpt - A boolean indicating whether to perform 2.5-opt.
-- nonblocking - A boolean indicating whether the function should yield() regularly.
-- Returns
-- count - The number of 2-opt replacements made to path[]
--[[
Typically TSP tour refinement takes place by "flipping" edges. For example, if
the tour contains the edges (v1, w1) and (w2, v2) in that order, then these two
edges can always be flipped to create (v1, w2) and (w1, v2). This sort of step
forms the basis of the 2-opt algorithm which is a steepest descent approach,
repeatedly flipping pairs of edges if they improve the tour quality until it
reaches a local minimum of the objective function and no more such flips exist.
In a similar vein, the 3-opt algorithm exchanges 3 edges at a time. These are
more specific versions of the Lin-Kernighan (LK) algorithm or better known as
the N-opt or variable-opt algorithm.
-- A Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travelling Salesman Problem
-- Chris Walshaw, September 27, 2001.
]]
function TSP:TwoOpt(path, weight, prune, twoPointFiveOpt, nonblocking)
local count = 0
local numNodes = #path
local pathR = pathR
-- Generate reverse lookup table
if lastpath ~= path then
for i = 1, numNodes do
pathR[path[i]] = i
end
end
-- Perform normal 2-opt
for i = 1, numNodes-3 do
local a, b = path[i], path[i+1]
local z = weight[a*numNodes-b]
--for j = i+2, numNodes-1 do
for m = 1, #prune[a] do
local j = pathR[prune[a][m]]
if j > i+1 and j ~= numNodes then
local c, d = path[j], path[j+1]
local currW = z + weight[c*numNodes-d]
local newW = weight[a*numNodes-c] + weight[b*numNodes-d]
if newW < currW then
-- Swap these 2 edges to get a shorter path
-- This is done by reversing the node order between i+1 to j
local left = i+1
local right = j
while left < right do
local L, R = path[right], path[left]
path[left], path[right] = L, R
pathR[L], pathR[R] = left, right
left = left + 1
right = right - 1
end
b = path[i+1]
z = weight[a*numNodes-b]
count = count + 1
end
end
end
end
-- Then perform 2.5-opt
if twoPointFiveOpt then
if nonblocking then
yield()
end
for i = 1, numNodes-4 do
local a, b, c = path[i], path[i+1], path[i+2]
local z = weight[a*numNodes-b] + weight[b*numNodes-c]
for m = 1, #prune[a] do
local j = pathR[prune[a][m]]
if j > i+2 and j ~= numNodes then
local d, e = path[j], path[j+1]
local currW = z + weight[d*numNodes-e]
local newW = weight[a*numNodes-c] + weight[d*numNodes-b] + weight[b*numNodes-e]
if newW < currW then
-- Remove node b from the path, then reinsert it between d and e
for q = i+1, j-1 do
path[q] = path[q+1]
pathR[path[q]] = q
end
path[j] = b
pathR[b] = j
b, c = path[i+1], path[i+2]
z = weight[a*numNodes-b] + weight[b*numNodes-c]
count = count + 1
end
end
end
end
end
lastpath = path
return count
end
-- Helper function for TSP:InsertNode()
-- Tries to insert node into an existing cluster
-- Returns true if successful, false otherwise
local function tryInsert(nodes, metadata, insertPoint, nodeID, radius, zoneW, zoneH)
local x, y = floor(nodeID / 10000) / 10000, (nodeID % 10000) / 10000
local x2, y2 = floor(nodes[insertPoint] / 10000) / 10000, (nodes[insertPoint] % 10000) / 10000
-- Calculate the new centroid and coord
local num = #metadata[insertPoint]
x2, y2 = (x2*num+x)/(num+1), (y2*num+y)/(num+1)
local coord = floor(x2 * 10000 + 0.5) * 10000 + floor(y2 * 10000 + 0.5)
x2, y2 = floor(coord / 10000) / 10000, (coord % 10000) / 10000 -- to round off the coordinate
-- Check that the merged point is valid
for i = 1, num do
local coord = metadata[insertPoint][i]
local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000
local t = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5
if t > radius then
return false
end
end
tinsert(metadata[insertPoint], nodeID)
nodes[insertPoint] = coord
return true
end
-- TSP:InsertNode(nodes, zoneID, nodeID, twoOpt, path)
-- Inserts a node into an existing route.
-- Arguments
-- nodes - The table containing a list of Routes node IDs to path
-- This list should only contain nodes on the same map. This
-- table should be indexed numerically from nodes[1] to nodes[n].
-- metadata - The table containing the cluster metadata, if available
-- zoneID - The map area ID of the map that the route is on.
-- nodeID - The Routes node ID to insert into the route.
-- Returns
-- pathLength - The length of the route in yards.
-- Notes: This function modifies the original nodes[] and metadata[] tables
-- directly
function TSP:InsertNode(nodes, metadata, zoneID, nodeID, radius)
assert(type(nodes) == "table", "InsertNode() expected table in 1st argument, got "..type(nodes).." instead.")
-- Check for trivial problem of 2 or less nodes
local numNodes = #nodes
if numNodes < 3 then
-- Trivial solution for an input size of 2 or less nodes
nodes[numNodes+1] = nodeID
if metadata then
metadata[numNodes+1] = {nodeID}
end
return TSP:PathLength(nodes, zoneID)
end
-- Insert the node to be added at the end of the list.
tinsert(nodes, nodeID)
numNodes = #nodes
-- Step 1 - Initialize and generate the weight matrix, and prune matrix if doing 2-opt
local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID)
local weight = {}
-- Not doing a twoopt means we only need to generate O(2n) entries in the weight table
local x, y, x2, y2
for i = 1, numNodes-2 do
-- for every node i, calculate its distance to node i+1
x, y = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000
x2, y2 = floor(nodes[i+1] / 10000) / 10000, (nodes[i+1] % 10000) / 10000
weight[i*numNodes-(i+1)] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance
end
-- do looparound node
x, y = floor(nodes[numNodes-1] / 10000) / 10000, (nodes[numNodes-1] % 10000) / 10000
x2, y2 = floor(nodes[1] / 10000) / 10000, (nodes[1] % 10000) / 10000
weight[(numNodes-1)*numNodes-1] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance
-- calc distance for every node to the node to be inserted
x2, y2 = floor(nodes[numNodes] / 10000) / 10000, (nodes[numNodes] % 10000) / 10000
for i = 1, numNodes-1 do
x, y = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000
local u, v = i*numNodes-numNodes, numNodes*numNodes-i
weight[u] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance
weight[v] = weight[u]
end
-- Step 2 - Find the best place to insert the node
local shortestPathLength = math.huge -- Some large value
local insertPoint
for i = 1, numNodes-2 do
local z = weight[i*numNodes-numNodes] + weight[numNodes*numNodes-(i+1)] - weight[i*numNodes-(i+1)]
if z < shortestPathLength then
shortestPathLength = z
insertPoint = i + 1
end
end
if weight[(numNodes-1)*numNodes-numNodes] + weight[numNodes*numNodes-1] - weight[(numNodes-1)*numNodes-1] < shortestPathLength then
-- Do nothing, inserting the node at the last place is the best, already inserted here.
if metadata then
tremove(nodes)
local try1, try2 = numNodes-1, 1
if weight[(numNodes-1)*numNodes-numNodes] > weight[numNodes*numNodes-1] then
try1, try2 = try2, try1 -- try the closer node first
end
local flag = tryInsert(nodes, metadata, try1, nodeID, radius, zoneW, zoneH)
if not flag then
flag = tryInsert(nodes, metadata, try2, nodeID, radius, zoneW, zoneH)
end
if not flag then -- both clusters failed, so insert a new cluster
tinsert(nodes, nodeID)
tinsert(metadata, {nodeID})
end
end
else
-- Remove it from the last place in the path and insert it at the best place found.
tremove(nodes)
if metadata then
local try1, try2 = insertPoint-1, insertPoint
if weight[(insertPoint-1)*numNodes-numNodes] > weight[numNodes*numNodes-insertPoint] then
try1, try2 = try2, try1
end
local flag = tryInsert(nodes, metadata, try1, nodeID, radius, zoneW, zoneH)
if not flag then
flag = tryInsert(nodes, metadata, try2, nodeID, radius, zoneW, zoneH)
end
if not flag then
tinsert(nodes, insertPoint, nodeID)
tinsert(metadata, insertPoint, {nodeID})
end
else
tinsert(nodes, insertPoint, nodeID)
end
end
return TSP:PathLength(nodes, zoneID)
end
-- TSP:PathLength(nodes, zoneID)
-- Returns how long a given route is in yards.
-- Arguments
-- nodes - The table containing a list of Routes node IDs to path
-- This list should only contain nodes on the same map. This
-- table should be indexed numerically from nodes[1] to nodes[n].
-- zoneID - The map area ID of the map that the route is on.
-- Returns
-- pathLength - The length of the route in yards.
function TSP:PathLength(nodes, zoneID)
assert(type(nodes) == "table", "PathLength() expected table in 1st argument, got "..type(nodes).." instead.")
local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID)
local numNodes = #nodes
local pathLength = 0
-- Check for trivial problem of 1 or less nodes
if numNodes <= 1 then
return 0
end
-- Get coordinate of last node
local x2, y2 = floor(nodes[numNodes] / 10000) / 10000, (nodes[numNodes] % 10000) / 10000
for i = 1, #nodes do
local x, y = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000
pathLength = pathLength + (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5
x2, y2 = x, y
end
return pathLength
end
-- TSP:ClusterRoute(nodes, zoneID, radius)
-- Arguments
-- nodes - The table containing a list of Routes node IDs to path
-- This list should only contain nodes on the same map. This
-- table should be indexed numerically from nodes[1] to nodes[n].
-- zoneID - The map area ID the route is in
-- radius - The radius in yards to cluster
-- Returns
-- path - The result TSP path is a table indexed numerically from path[1]
-- to path[n], a list of Routes node IDs. n is usually smaller than
-- the original input
-- metadata - The metadata table for path[] containing the original nodes
-- clustered
-- length - The length of the new route in yards
-- Notes: The original table sent in is unmodified. New tables are returned.
--[[
Hierarchical Agglomerative Clustering
Data clustering algorithms can be hierarchical or partitional. Hierarchical
algorithms find successive clusters using previously established clusters,
whereas partitional algorithms determine all clusters at once. Hierarchical
algorithms can be agglomerative ("bottom-up") or divisive ("top-down").
Agglomerative algorithms begin with each element as a separate cluster and
merge them into successively larger clusters. Divisive algorithms begin with
the whole set and proceed to divide it into successively smaller clusters.
This method (Agglomerative) builds the hierarchy from the individual elements
by progressively merging clusters. The first step is to determine which
elements to merge in a cluster. Usually, we want to take the two closest
elements, according to the chosen distance.
Optionally, one can also construct a distance matrix at this stage, where the
number in the i-th row j-th column is the distance between the i-th and j-th
elements. Then, as clustering progresses, rows and columns are merged as the
clusters are merged and the distances updated. This is a common way to
implement this type of clustering, and has the benefit of catching distances
between clusters.
-- From Wikipedia, Cluster analysis
-- http://en.wikipedia.org/wiki/Cluster_analysis
-- 25 January 2008
]]
function TSP:ClusterRoute(nodes, zoneID, radius)
local weight = {} -- weight matrix
local metadata = {} -- metadata after clustering
local numNodes = #nodes
local zoneW, zoneH = Routes.Dragons:GetZoneSize(zoneID)
local diameter = radius * 2
--local taboo = 0
-- Create a copy of the nodes[] table and use this instead of the original because we want to modify this table
local nodes2 = {}
for i = 1, numNodes do
nodes2[i] = nodes[i]
weight[i] = {} -- make weight[] a 2-dimensional table
end
local nodes = nodes2
-- Step 1: Generate the weight table
for i = 1, numNodes do
local coord = nodes[i]
local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000
local w = weight[i]
w[i] = 0
for j = i+1, numNodes do
local coord = nodes[j]
local x2, y2 = floor(coord / 10000) / 10000, (coord % 10000) / 10000
w[j] = (((x2 - x)*zoneW)^2 + ((y2 - y)*zoneH)^2)^0.5 -- Calc distance between each node pair
weight[j][i] = true -- dummy value just to fill the lower half of the table so that tremove() will work on it
end
end
-- Step 2: Generate the initial metadata tables
for i = 1, numNodes do
metadata[i] = {}
metadata[i][1] = nodes[i]
end
-- Step 5: ...and loop until there is no such pair of nodes
while true do
-- Step 3: Find the closest pair of nodes within the merge radius
local smallestDist = inf
local node1, node2
for i = 1, numNodes-1 do
local w = weight[i]
for j = i+1, numNodes do
local w2 = w[j]
if w2 <= diameter and w2 < smallestDist then
smallestDist = w2
node1 = i
node2 = j
end
end
end
-- Step 4: Merge node2 into node1...
if node1 then
local m1, m2 = metadata[node1], metadata[node2]
local node1num, node2num = #m1, #m2
local totalnum = node1num + node2num
-- Calculate the new centroid of node1
local n1, n2 = nodes[node1], nodes[node2]
local node1x = ( floor(n1 / 10000) / 10000 * node1num + floor(n2 / 10000) / 10000 * node2num ) / totalnum
local node1y = ( (n1 % 10000) / 10000 * node1num + (n2 % 10000) / 10000 * node2num ) / totalnum
-- Calculate the new coord from the new (x,y)
local coord = floor(node1x * 10000 + 0.5) * 10000 + floor(node1y * 10000 + 0.5)
node1x, node1y = floor(coord / 10000) / 10000, (coord % 10000) / 10000 -- to round off the coordinate
-- Check that the merged point is valid
for i = 1, node1num do
local coord = m1[i]
local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000
local t = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5
if t > radius then
-- Merging this node will cause the merged point to be too far away
-- from an original point, so taboo it by making the weight infinity
-- And store a backup in the lower half of the table
weight[node2][node1] = weight[node1][node2]
weight[node1][node2] = inf
--taboo = taboo + 1
break
end
end
if weight[node1][node2] ~= inf then
for i = 1, node2num do
local coord = m2[i]
local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000
local t = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5
if t > radius then
weight[node2][node1] = weight[node1][node2]
weight[node1][node2] = inf
--taboo = taboo + 1
break
end
end
end
if weight[node1][node2] ~= inf then
-- Merge the metadata of node2 into node1
for i = 1, node2num do
tinsert(m1, m2[i])
end
-- Set the new coord of node1
nodes[node1] = coord
-- Delete node2 from metadata[]
tremove(metadata, node2)
-- Delete node2 from nodes[]
tremove(nodes, node2)
-- Remove node2 from the weight table
for i = 1, numNodes do
tremove(weight[i], node2) -- remove column
end
tremove(weight, node2) -- remove row
-- Update number of nodes
numNodes = numNodes - 1
-- Update the weight table for all nodes relating to node1, this can untaboo nodes
for i = 1, node1-1 do
local coord = nodes[i]
local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000
weight[i][node1] = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5
end
for i = node1+1, numNodes do
local coord = nodes[i]
local x, y = floor(coord / 10000) / 10000, (coord % 10000) / 10000
weight[node1][i] = (((node1x - x)*zoneW)^2 + ((node1y - y)*zoneH)^2)^0.5
end
end
else
break -- loop termination
end
end
-- Get the new pathLength
local pathLength = weight[1][numNodes]
pathLength = pathLength == inf and weight[numNodes][1] or pathLength
for i = 1, numNodes-1 do
local w = weight[i][i+1]
pathLength = pathLength + (w == inf and weight[i+1][i] or w) -- use the backup in the lower half of the triangle if it was tabooed
end
--ChatFrame1:AddMessage(taboo.." tabooed")
return nodes, metadata, pathLength
end
-- TSP:DecrossRoute(nodes)
-- Arguments
-- nodes - The table containing a list of Routes node IDs to path
-- This list should only contain nodes on the same map. This
-- table should be indexed numerically from nodes[1] to nodes[n].
-- Returns nothing
-- Notes: The original table sent in is modified directly
--
-- This function is contributed by Polarina for quickly solving a TSP in
-- O(n log n). The method merely calculates a centroid, and compares the angle
-- of every node with the centroid and sorts it that way, resulting in a tour
-- that doesn't cross itself, but obviously not ideal. Used for initial route
-- creation to get an initial quality value.
function TSP:DecrossRoute(nodes)
local numNodes = #nodes
local math_atan2 = math.atan2
-- Find the nodes centroid
local x, y = 0, 0
for index, value in ipairs(nodes) do
x = x + floor(value / 1e4)
y = y + value % 1e4
end
x = x / numNodes
y = y / numNodes
-- From the middle, link all nodes in a circle
table.sort(nodes, function(a, b)
local aX = floor(a / 1e4)
local aY = a % 1e4
local bX = floor(b / 1e4)
local bY = b % 1e4
return math_atan2(aY - y, aX - x) < math_atan2(bY - y, bX - x)
end)
--[[
local weight = {}
local path = {}
local prune = {}
for i = 1, numNodes do
prune[i] = {}
end
for i = 1, numNodes do
local x1, y1 = floor(nodes[i] / 10000) / 10000, (nodes[i] % 10000) / 10000
local u = i*numNodes-i
weight[u] = 0
for j = i+1, numNodes do
local x2, y2 = floor(nodes[j] / 10000) / 10000, (nodes[j] % 10000) / 10000
local u, v = i*numNodes-j, j*numNodes-i
weight[u] = ((x2 - x1)^2 + (y2 - y1)^2)^0.5 -- Calc distance between each node pair
weight[v] = weight[u]
--if weight[u] < 0.4 then
tinsert(prune[i], j)
tinsert(prune[j], i)
--end
end
path[i] = i
end
while TSP:TwoOpt(path, weight, prune, false, false) > 0 do end
local newpath = {}
for i = 1, numNodes do
newpath[i] = nodes[ path[i] ]
end
return newpath]]
return nodes
end
-- vim: ts=4 noexpandtab